Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
57.b1 |
57c2 |
57.b |
57c |
$2$ |
$5$ |
\( 3 \cdot 19 \) |
\( - 3^{2} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$5$ |
5.24.0.3 |
5B.1.2 |
$190$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$60$ |
$0.651407$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$9.09587$ |
$[0, 1, 1, -4390, -113432]$ |
\(y^2+y=x^3+x^2-4390x-113432\) |
5.24.0-5.a.2.2, 38.2.0.a.1, 190.48.1.? |
$[]$ |
171.c1 |
171c2 |
171.c |
171c |
$2$ |
$5$ |
\( 3^{2} \cdot 19 \) |
\( - 3^{8} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$570$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$480$ |
$1.200714$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$8.43438$ |
$[0, 0, 1, -39513, 3023145]$ |
\(y^2+y=x^3-39513x+3023145\) |
5.12.0.a.2, 15.24.0-5.a.2.1, 38.2.0.a.1, 190.24.1.?, 570.48.1.? |
$[]$ |
912.d1 |
912f2 |
912.d |
912f |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 19 \) |
\( - 2^{12} \cdot 3^{2} \cdot 19^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$380$ |
$48$ |
$1$ |
$0.226284916$ |
$1$ |
|
$4$ |
$2400$ |
$1.344555$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$6.61609$ |
$[0, -1, 0, -70245, 7189389]$ |
\(y^2=x^3-x^2-70245x+7189389\) |
5.12.0.a.2, 20.24.0-5.a.2.2, 38.2.0.a.1, 190.24.1.?, 380.48.1.? |
$[(156, 57)]$ |
1083.d1 |
1083c2 |
1083.d |
1083c |
$2$ |
$5$ |
\( 3 \cdot 19^{2} \) |
\( - 3^{2} \cdot 19^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$190$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$21600$ |
$2.123627$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$7.79131$ |
$[0, -1, 1, -1584910, 768519165]$ |
\(y^2+y=x^3-x^2-1584910x+768519165\) |
5.12.0.a.2, 10.24.0-5.a.2.2, 38.2.0.a.1, 95.24.0.?, 190.48.1.? |
$[]$ |
1425.i1 |
1425b2 |
1425.i |
1425b |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 19 \) |
\( - 3^{2} \cdot 5^{6} \cdot 19^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.4 |
5B.1.3 |
$190$ |
$48$ |
$1$ |
$15.67269868$ |
$1$ |
|
$0$ |
$8400$ |
$1.456125$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$6.39386$ |
$[0, -1, 1, -109758, -13959457]$ |
\(y^2+y=x^3-x^2-109758x-13959457\) |
5.24.0-5.a.2.1, 38.2.0.a.1, 190.48.1.? |
$[(10452669/58, 33587977123/58)]$ |
2736.h1 |
2736s2 |
2736.h |
2736s |
$2$ |
$5$ |
\( 2^{4} \cdot 3^{2} \cdot 19 \) |
\( - 2^{12} \cdot 3^{8} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1140$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$19200$ |
$1.893860$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$6.53056$ |
$[0, 0, 0, -632208, -193481296]$ |
\(y^2=x^3-632208x-193481296\) |
5.12.0.a.2, 38.2.0.a.1, 60.24.0-5.a.2.2, 190.24.1.?, 1140.48.1.? |
$[]$ |
2793.a1 |
2793f2 |
2793.a |
2793f |
$2$ |
$5$ |
\( 3 \cdot 7^{2} \cdot 19 \) |
\( - 3^{2} \cdot 7^{6} \cdot 19^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1330$ |
$48$ |
$1$ |
$0.190603013$ |
$1$ |
|
$8$ |
$19800$ |
$1.624363$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$6.10603$ |
$[0, -1, 1, -215126, 38476850]$ |
\(y^2+y=x^3-x^2-215126x+38476850\) |
5.12.0.a.2, 35.24.0-5.a.2.2, 38.2.0.a.1, 190.24.1.?, 1330.48.1.? |
$[(287, 541)]$ |
3249.a1 |
3249f2 |
3249.a |
3249f |
$2$ |
$5$ |
\( 3^{2} \cdot 19^{2} \) |
\( - 3^{8} \cdot 19^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$570$ |
$48$ |
$1$ |
$6.359928028$ |
$1$ |
|
$0$ |
$172800$ |
$2.672932$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$7.54794$ |
$[0, 0, 1, -14264193, -20735753270]$ |
\(y^2+y=x^3-14264193x-20735753270\) |
5.12.0.a.2, 30.24.0-5.a.2.1, 38.2.0.a.1, 190.24.1.?, 285.24.0.?, $\ldots$ |
$[(879985/14, 207599981/14)]$ |
3648.h1 |
3648f2 |
3648.h |
3648f |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 19 \) |
\( - 2^{6} \cdot 3^{2} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$760$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$4800$ |
$0.997981$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$4.99077$ |
$[0, -1, 0, -17561, -889893]$ |
\(y^2=x^3-x^2-17561x-889893\) |
5.12.0.a.2, 38.2.0.a.1, 40.24.0-5.a.2.3, 190.24.1.?, 760.48.1.? |
$[]$ |
3648.y1 |
3648be2 |
3648.y |
3648be |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 19 \) |
\( - 2^{6} \cdot 3^{2} \cdot 19^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$760$ |
$48$ |
$1$ |
$1.411899564$ |
$1$ |
|
$2$ |
$4800$ |
$0.997981$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$4.99077$ |
$[0, 1, 0, -17561, 889893]$ |
\(y^2=x^3+x^2-17561x+889893\) |
5.12.0.a.2, 38.2.0.a.1, 40.24.0-5.a.2.1, 190.24.1.?, 760.48.1.? |
$[(76, 3)]$ |
4275.a1 |
4275i2 |
4275.a |
4275i |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 3^{8} \cdot 5^{6} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$570$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$67200$ |
$2.005432$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$6.34210$ |
$[0, 0, 1, -987825, 377893156]$ |
\(y^2+y=x^3-987825x+377893156\) |
5.12.0.a.2, 15.24.0-5.a.2.2, 38.2.0.a.1, 190.24.1.?, 570.48.1.? |
$[]$ |
6897.g1 |
6897g2 |
6897.g |
6897g |
$2$ |
$5$ |
\( 3 \cdot 11^{2} \cdot 19 \) |
\( - 3^{2} \cdot 11^{6} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$2090$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$81000$ |
$1.850355$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.78837$ |
$[0, 1, 1, -531230, 148852787]$ |
\(y^2+y=x^3+x^2-531230x+148852787\) |
5.12.0.a.2, 38.2.0.a.1, 55.24.0-5.a.2.1, 190.24.1.?, 2090.48.1.? |
$[]$ |
8379.q1 |
8379o2 |
8379.q |
8379o |
$2$ |
$5$ |
\( 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 3^{8} \cdot 7^{6} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$3990$ |
$48$ |
$1$ |
$1$ |
$9$ |
$3$ |
$0$ |
$158400$ |
$2.173668$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$6.09313$ |
$[0, 0, 1, -1936137, -1036938821]$ |
\(y^2+y=x^3-1936137x-1036938821\) |
5.12.0.a.2, 38.2.0.a.1, 105.24.0.?, 190.24.1.?, 3990.48.1.? |
$[]$ |
9633.p1 |
9633p2 |
9633.p |
9633p |
$2$ |
$5$ |
\( 3 \cdot 13^{2} \cdot 19 \) |
\( - 3^{2} \cdot 13^{6} \cdot 19^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$2470$ |
$48$ |
$1$ |
$5.580513645$ |
$1$ |
|
$0$ |
$115200$ |
$1.933882$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.68681$ |
$[0, 1, 1, -741966, -246241771]$ |
\(y^2+y=x^3+x^2-741966x-246241771\) |
5.12.0.a.2, 38.2.0.a.1, 65.24.0-5.a.2.1, 190.24.1.?, 2470.48.1.? |
$[(3981/2, 11657/2)]$ |
10944.bt1 |
10944bt2 |
10944.bt |
10944bt |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 19 \) |
\( - 2^{6} \cdot 3^{8} \cdot 19^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$2280$ |
$48$ |
$1$ |
$19.80313271$ |
$1$ |
|
$0$ |
$38400$ |
$1.547287$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.10998$ |
$[0, 0, 0, -158052, -24185162]$ |
\(y^2=x^3-158052x-24185162\) |
5.12.0.a.2, 38.2.0.a.1, 120.24.0.?, 190.24.1.?, 2280.48.1.? |
$[(930147311/1075, 23897380164309/1075)]$ |
10944.bu1 |
10944z2 |
10944.bu |
10944z |
$2$ |
$5$ |
\( 2^{6} \cdot 3^{2} \cdot 19 \) |
\( - 2^{6} \cdot 3^{8} \cdot 19^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$2280$ |
$48$ |
$1$ |
$0.717085236$ |
$1$ |
|
$2$ |
$38400$ |
$1.547287$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.10998$ |
$[0, 0, 0, -158052, 24185162]$ |
\(y^2=x^3-158052x+24185162\) |
5.12.0.a.2, 38.2.0.a.1, 120.24.0.?, 190.24.1.?, 2280.48.1.? |
$[(91, 3249)]$ |
16473.a1 |
16473c2 |
16473.a |
16473c |
$2$ |
$5$ |
\( 3 \cdot 17^{2} \cdot 19 \) |
\( - 3^{2} \cdot 17^{6} \cdot 19^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$3230$ |
$48$ |
$1$ |
$8.864873217$ |
$1$ |
|
$0$ |
$302400$ |
$2.068012$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.53834$ |
$[0, -1, 1, -1268806, -549677532]$ |
\(y^2+y=x^3-x^2-1268806x-549677532\) |
5.12.0.a.2, 38.2.0.a.1, 85.24.0.?, 190.24.1.?, 3230.48.1.? |
$[(9661/2, 818549/2)]$ |
17328.bc1 |
17328bf2 |
17328.bc |
17328bf |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 19^{2} \) |
\( - 2^{12} \cdot 3^{2} \cdot 19^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$380$ |
$48$ |
$1$ |
$1$ |
$25$ |
$5$ |
$0$ |
$864000$ |
$2.816772$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$6.43022$ |
$[0, 1, 0, -25358565, -49159868013]$ |
\(y^2=x^3+x^2-25358565x-49159868013\) |
5.12.0.a.2, 20.24.0-5.a.2.4, 38.2.0.a.1, 190.24.1.?, 380.48.1.? |
$[]$ |
20691.a1 |
20691r2 |
20691.a |
20691r |
$2$ |
$5$ |
\( 3^{2} \cdot 11^{2} \cdot 19 \) |
\( - 3^{8} \cdot 11^{6} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$6270$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$648000$ |
$2.399662$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.81176$ |
$[0, 0, 1, -4781073, -4023806328]$ |
\(y^2+y=x^3-4781073x-4023806328\) |
5.12.0.a.2, 38.2.0.a.1, 165.24.0.?, 190.24.1.?, 6270.48.1.? |
$[]$ |
22800.do1 |
22800di2 |
22800.do |
22800di |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{12} \cdot 3^{2} \cdot 5^{6} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$380$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$336000$ |
$2.149273$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.45612$ |
$[0, 1, 0, -1756133, 895161363]$ |
\(y^2=x^3+x^2-1756133x+895161363\) |
5.12.0.a.2, 20.24.0-5.a.2.1, 38.2.0.a.1, 190.24.1.?, 380.48.1.? |
$[]$ |
27075.d1 |
27075u2 |
27075.d |
27075u |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 19^{2} \) |
\( - 3^{2} \cdot 5^{6} \cdot 19^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$190$ |
$48$ |
$1$ |
$1.398199047$ |
$1$ |
|
$0$ |
$3024000$ |
$2.928345$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$6.28023$ |
$[0, 1, 1, -39622758, 95985650144]$ |
\(y^2+y=x^3+x^2-39622758x+95985650144\) |
5.12.0.a.2, 10.24.0-5.a.2.1, 38.2.0.a.1, 95.24.0.?, 190.48.1.? |
$[(12621/2, 390959/2)]$ |
28899.e1 |
28899r2 |
28899.e |
28899r |
$2$ |
$5$ |
\( 3^{2} \cdot 13^{2} \cdot 19 \) |
\( - 3^{8} \cdot 13^{6} \cdot 19^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$7410$ |
$48$ |
$1$ |
$0.336529998$ |
$1$ |
|
$6$ |
$921600$ |
$2.483189$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.72030$ |
$[0, 0, 1, -6677697, 6641850114]$ |
\(y^2+y=x^3-6677697x+6641850114\) |
5.12.0.a.2, 38.2.0.a.1, 190.24.1.?, 195.24.0.?, 7410.48.1.? |
$[(1703, 14449)]$ |
30153.b1 |
30153i2 |
30153.b |
30153i |
$2$ |
$5$ |
\( 3 \cdot 19 \cdot 23^{2} \) |
\( - 3^{2} \cdot 19^{5} \cdot 23^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$4370$ |
$48$ |
$1$ |
$0.302474505$ |
$1$ |
|
$10$ |
$739200$ |
$2.219154$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.38955$ |
$[0, 1, 1, -2322486, 1361544662]$ |
\(y^2+y=x^3+x^2-2322486x+1361544662\) |
5.12.0.a.2, 38.2.0.a.1, 115.24.0.?, 190.24.1.?, 4370.48.1.? |
$[(567, 15076), (7288/3, 95471/3)]$ |
44688.cv1 |
44688cs2 |
44688.cv |
44688cs |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 7^{2} \cdot 19 \) |
\( - 2^{12} \cdot 3^{2} \cdot 7^{6} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$2660$ |
$48$ |
$1$ |
$1$ |
$25$ |
$5$ |
$0$ |
$792000$ |
$2.317509$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.30175$ |
$[0, 1, 0, -3442021, -2459076397]$ |
\(y^2=x^3+x^2-3442021x-2459076397\) |
5.12.0.a.2, 38.2.0.a.1, 140.24.0.?, 190.24.1.?, 2660.48.1.? |
$[]$ |
47937.e1 |
47937c2 |
47937.e |
47937c |
$2$ |
$5$ |
\( 3 \cdot 19 \cdot 29^{2} \) |
\( - 3^{2} \cdot 19^{5} \cdot 29^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$5510$ |
$48$ |
$1$ |
$1$ |
$4$ |
$2$ |
$0$ |
$1344000$ |
$2.335056$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.28676$ |
$[0, -1, 1, -3692270, -2729565151]$ |
\(y^2+y=x^3-x^2-3692270x-2729565151\) |
5.12.0.a.2, 38.2.0.a.1, 145.24.0.?, 190.24.1.?, 5510.48.1.? |
$[]$ |
49419.l1 |
49419c2 |
49419.l |
49419c |
$2$ |
$5$ |
\( 3^{2} \cdot 17^{2} \cdot 19 \) |
\( - 3^{8} \cdot 17^{6} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$9690$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$2419200$ |
$2.617321$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.58526$ |
$[0, 0, 1, -11419257, 14852712613]$ |
\(y^2+y=x^3-11419257x+14852712613\) |
5.12.0.a.2, 38.2.0.a.1, 190.24.1.?, 255.24.0.?, 9690.48.1.? |
$[]$ |
51984.z1 |
51984cq2 |
51984.z |
51984cq |
$2$ |
$5$ |
\( 2^{4} \cdot 3^{2} \cdot 19^{2} \) |
\( - 2^{12} \cdot 3^{8} \cdot 19^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1140$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$6912000$ |
$3.366081$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$6.38670$ |
$[0, 0, 0, -228227088, 1327088209264]$ |
\(y^2=x^3-228227088x+1327088209264\) |
5.12.0.a.2, 38.2.0.a.1, 60.24.0-5.a.2.4, 190.24.1.?, 1140.48.1.? |
$[]$ |
53067.v1 |
53067u2 |
53067.v |
53067u |
$2$ |
$5$ |
\( 3 \cdot 7^{2} \cdot 19^{2} \) |
\( - 3^{2} \cdot 7^{6} \cdot 19^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1330$ |
$48$ |
$1$ |
$1$ |
$25$ |
$5$ |
$0$ |
$7128000$ |
$3.096581$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$6.07733$ |
$[0, 1, 1, -77660606, -263446752481]$ |
\(y^2+y=x^3+x^2-77660606x-263446752481\) |
5.12.0.a.2, 38.2.0.a.1, 70.24.0-5.a.2.2, 190.24.1.?, 665.24.0.?, $\ldots$ |
$[]$ |
54777.a1 |
54777b2 |
54777.a |
54777b |
$2$ |
$5$ |
\( 3 \cdot 19 \cdot 31^{2} \) |
\( - 3^{2} \cdot 19^{5} \cdot 31^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$5890$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$1836000$ |
$2.368401$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.25881$ |
$[0, -1, 1, -4219110, 3337055264]$ |
\(y^2+y=x^3-x^2-4219110x+3337055264\) |
5.12.0.a.2, 38.2.0.a.1, 155.24.0.?, 190.24.1.?, 5890.48.1.? |
$[]$ |
68400.fj1 |
68400fo2 |
68400.fj |
68400fo |
$2$ |
$5$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{12} \cdot 3^{8} \cdot 5^{6} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1140$ |
$48$ |
$1$ |
$1$ |
$9$ |
$3$ |
$0$ |
$2688000$ |
$2.698578$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.50979$ |
$[0, 0, 0, -15805200, -24185162000]$ |
\(y^2=x^3-15805200x-24185162000\) |
5.12.0.a.2, 38.2.0.a.1, 60.24.0-5.a.2.1, 190.24.1.?, 1140.48.1.? |
$[]$ |
69312.t1 |
69312co2 |
69312.t |
69312co |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 19^{2} \) |
\( - 2^{6} \cdot 3^{2} \cdot 19^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$760$ |
$48$ |
$1$ |
$6.009010717$ |
$1$ |
|
$0$ |
$1728000$ |
$2.470200$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.25737$ |
$[0, -1, 0, -6339641, -6141813681]$ |
\(y^2=x^3-x^2-6339641x-6141813681\) |
5.12.0.a.2, 38.2.0.a.1, 40.24.0-5.a.2.5, 190.24.1.?, 760.48.1.? |
$[(355562/11, 32449929/11)]$ |
69312.cs1 |
69312bq2 |
69312.cs |
69312bq |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 19^{2} \) |
\( - 2^{6} \cdot 3^{2} \cdot 19^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$760$ |
$48$ |
$1$ |
$7.024933726$ |
$1$ |
|
$0$ |
$1728000$ |
$2.470200$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.25737$ |
$[0, 1, 0, -6339641, 6141813681]$ |
\(y^2=x^3+x^2-6339641x+6141813681\) |
5.12.0.a.2, 38.2.0.a.1, 40.24.0-5.a.2.7, 190.24.1.?, 760.48.1.? |
$[(53608/7, 7796517/7)]$ |
69825.ci1 |
69825ca2 |
69825.ci |
69825ca |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 3^{2} \cdot 5^{6} \cdot 7^{6} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$1330$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$2772000$ |
$2.429081$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.20966$ |
$[0, 1, 1, -5378158, 4798849969]$ |
\(y^2+y=x^3+x^2-5378158x+4798849969\) |
5.12.0.a.2, 35.24.0-5.a.2.1, 38.2.0.a.1, 190.24.1.?, 1330.48.1.? |
$[]$ |
78033.c1 |
78033c2 |
78033.c |
78033c |
$2$ |
$5$ |
\( 3 \cdot 19 \cdot 37^{2} \) |
\( - 3^{2} \cdot 19^{5} \cdot 37^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$7030$ |
$48$ |
$1$ |
$17.58248997$ |
$1$ |
|
$0$ |
$2980800$ |
$2.456867$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.18785$ |
$[0, 1, 1, -6010366, -5673535913]$ |
\(y^2+y=x^3+x^2-6010366x-5673535913\) |
5.12.0.a.2, 38.2.0.a.1, 185.24.0.?, 190.24.1.?, 7030.48.1.? |
$[(2717276753/196, 141559613158879/196)]$ |
81225.bq1 |
81225bi2 |
81225.bq |
81225bi |
$2$ |
$5$ |
\( 3^{2} \cdot 5^{2} \cdot 19^{2} \) |
\( - 3^{8} \cdot 5^{6} \cdot 19^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$570$ |
$48$ |
$1$ |
$78.61388454$ |
$1$ |
|
$0$ |
$24192000$ |
$3.477654$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$6.25300$ |
$[0, 0, 1, -356604825, -2591969158719]$ |
\(y^2+y=x^3-356604825x-2591969158719\) |
5.12.0.a.2, 30.24.0-5.a.2.2, 38.2.0.a.1, 190.24.1.?, 285.24.0.?, $\ldots$ |
$[(29151804384603691752193245364492928009/14118791498367506, 156014073087339879142910534404386416608792957793728151969/14118791498367506)]$ |
90459.u1 |
90459s2 |
90459.u |
90459s |
$2$ |
$5$ |
\( 3^{2} \cdot 19 \cdot 23^{2} \) |
\( - 3^{8} \cdot 19^{5} \cdot 23^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$13110$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$5913600$ |
$2.768459$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.44832$ |
$[0, 0, 1, -20902377, -36782608257]$ |
\(y^2+y=x^3-20902377x-36782608257\) |
5.12.0.a.2, 38.2.0.a.1, 190.24.1.?, 345.24.0.?, 13110.48.1.? |
$[]$ |
91200.ea1 |
91200fi2 |
91200.ea |
91200fi |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{6} \cdot 3^{2} \cdot 5^{6} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$760$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$672000$ |
$1.802700$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$4.42969$ |
$[0, -1, 0, -439033, 112114687]$ |
\(y^2=x^3-x^2-439033x+112114687\) |
5.12.0.a.2, 38.2.0.a.1, 40.24.0-5.a.2.2, 190.24.1.?, 760.48.1.? |
$[]$ |
91200.fl1 |
91200dx2 |
91200.fl |
91200dx |
$2$ |
$5$ |
\( 2^{6} \cdot 3 \cdot 5^{2} \cdot 19 \) |
\( - 2^{6} \cdot 3^{2} \cdot 5^{6} \cdot 19^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$760$ |
$48$ |
$1$ |
$7.153648900$ |
$1$ |
|
$2$ |
$672000$ |
$1.802700$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$4.42969$ |
$[0, 1, 0, -439033, -112114687]$ |
\(y^2=x^3+x^2-439033x-112114687\) |
5.12.0.a.2, 38.2.0.a.1, 40.24.0-5.a.2.4, 190.24.1.?, 760.48.1.? |
$[(1832, 72357)]$ |
95817.a1 |
95817e2 |
95817.a |
95817e |
$2$ |
$5$ |
\( 3 \cdot 19 \cdot 41^{2} \) |
\( - 3^{2} \cdot 19^{5} \cdot 41^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$7790$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$4080000$ |
$2.508194$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.14869$ |
$[0, -1, 1, -7380150, -7714510090]$ |
\(y^2+y=x^3-x^2-7380150x-7714510090\) |
5.12.0.a.2, 38.2.0.a.1, 190.24.1.?, 205.24.0.?, 7790.48.1.? |
$[]$ |
105393.s1 |
105393k2 |
105393.s |
105393k |
$2$ |
$5$ |
\( 3 \cdot 19 \cdot 43^{2} \) |
\( - 3^{2} \cdot 19^{5} \cdot 43^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$8170$ |
$48$ |
$1$ |
$2.230153237$ |
$1$ |
|
$0$ |
$4876200$ |
$2.532009$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.13100$ |
$[0, -1, 1, -8117726, 8904972923]$ |
\(y^2+y=x^3-x^2-8117726x+8904972923\) |
5.12.0.a.2, 38.2.0.a.1, 190.24.1.?, 215.24.0.?, 8170.48.1.? |
$[(6581/2, 1079/2)]$ |
110352.y1 |
110352x2 |
110352.y |
110352x |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 11^{2} \cdot 19 \) |
\( - 2^{12} \cdot 3^{2} \cdot 11^{6} \cdot 19^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$4180$ |
$48$ |
$1$ |
$89.62446613$ |
$1$ |
|
$0$ |
$3240000$ |
$2.543503$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.12256$ |
$[0, -1, 0, -8499685, -9535078067]$ |
\(y^2=x^3-x^2-8499685x-9535078067\) |
5.12.0.a.2, 38.2.0.a.1, 190.24.1.?, 220.24.0.?, 4180.48.1.? |
$[(1245738521611958691751410666220643275276/350105976569255375, 41909220545614004301733227523570286115643755705984756072399/350105976569255375)]$ |
125913.e1 |
125913h2 |
125913.e |
125913h |
$2$ |
$5$ |
\( 3 \cdot 19 \cdot 47^{2} \) |
\( - 3^{2} \cdot 19^{5} \cdot 47^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$8930$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$6334200$ |
$2.576481$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.09871$ |
$[0, 1, 1, -9698246, 11621656484]$ |
\(y^2+y=x^3+x^2-9698246x+11621656484\) |
5.12.0.a.2, 38.2.0.a.1, 190.24.1.?, 235.24.0.?, 8930.48.1.? |
$[]$ |
131043.a1 |
131043d2 |
131043.a |
131043d |
$2$ |
$5$ |
\( 3 \cdot 11^{2} \cdot 19^{2} \) |
\( - 3^{2} \cdot 11^{6} \cdot 19^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$2090$ |
$48$ |
$1$ |
$13.84012098$ |
$1$ |
|
$0$ |
$29160000$ |
$3.322575$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.84125$ |
$[0, -1, 1, -191774150, -1022131912396]$ |
\(y^2+y=x^3-x^2-191774150x-1022131912396\) |
5.12.0.a.2, 38.2.0.a.1, 110.24.0.?, 190.24.1.?, 1045.24.0.?, $\ldots$ |
$[(32929421/10, 188792559019/10)]$ |
134064.ea1 |
134064bw2 |
134064.ea |
134064bw |
$2$ |
$5$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{12} \cdot 3^{8} \cdot 7^{6} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$7980$ |
$48$ |
$1$ |
$1$ |
$9$ |
$3$ |
$0$ |
$6336000$ |
$2.866817$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.36673$ |
$[0, 0, 0, -30978192, 66364084528]$ |
\(y^2=x^3-30978192x+66364084528\) |
5.12.0.a.2, 38.2.0.a.1, 190.24.1.?, 420.24.0.?, 7980.48.1.? |
$[]$ |
143811.a1 |
143811a2 |
143811.a |
143811a |
$2$ |
$5$ |
\( 3^{2} \cdot 19 \cdot 29^{2} \) |
\( - 3^{8} \cdot 19^{5} \cdot 29^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$16530$ |
$48$ |
$1$ |
$0.601886303$ |
$1$ |
|
$4$ |
$10752000$ |
$2.884361$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.35274$ |
$[0, 0, 1, -33230433, 73731489502]$ |
\(y^2+y=x^3-33230433x+73731489502\) |
5.12.0.a.2, 38.2.0.a.1, 190.24.1.?, 435.24.0.?, 16530.48.1.? |
$[(3248, 7989)]$ |
154128.t1 |
154128bo2 |
154128.t |
154128bo |
$2$ |
$5$ |
\( 2^{4} \cdot 3 \cdot 13^{2} \cdot 19 \) |
\( - 2^{12} \cdot 3^{2} \cdot 13^{6} \cdot 19^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$4940$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$4608000$ |
$2.627029$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.06319$ |
$[0, -1, 0, -11871461, 15747601869]$ |
\(y^2=x^3-x^2-11871461x+15747601869\) |
5.12.0.a.2, 38.2.0.a.1, 190.24.1.?, 260.24.0.?, 4940.48.1.? |
$[]$ |
159201.e1 |
159201e2 |
159201.e |
159201e |
$2$ |
$5$ |
\( 3^{2} \cdot 7^{2} \cdot 19^{2} \) |
\( - 3^{8} \cdot 7^{6} \cdot 19^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$3990$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$57024000$ |
$3.645889$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$6.07024$ |
$[0, 0, 1, -698945457, 7112363371524]$ |
\(y^2+y=x^3-698945457x+7112363371524\) |
5.12.0.a.2, 38.2.0.a.1, 190.24.1.?, 210.24.0.?, 1995.24.0.?, $\ldots$ |
$[]$ |
160113.f1 |
160113g2 |
160113.f |
160113g |
$2$ |
$5$ |
\( 3 \cdot 19 \cdot 53^{2} \) |
\( - 3^{2} \cdot 19^{5} \cdot 53^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$10070$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$8985600$ |
$2.636555$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.05663$ |
$[0, -1, 1, -12332446, -16665400125]$ |
\(y^2+y=x^3-x^2-12332446x-16665400125\) |
5.12.0.a.2, 38.2.0.a.1, 190.24.1.?, 265.24.0.?, 10070.48.1.? |
$[]$ |
164331.c1 |
164331c2 |
164331.c |
164331c |
$2$ |
$5$ |
\( 3^{2} \cdot 19 \cdot 31^{2} \) |
\( - 3^{8} \cdot 19^{5} \cdot 31^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$17670$ |
$48$ |
$1$ |
$131.1477325$ |
$1$ |
|
$0$ |
$14688000$ |
$2.917706$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.32661$ |
$[0, 0, 1, -37971993, -90062520143]$ |
\(y^2+y=x^3-37971993x-90062520143\) |
5.12.0.a.2, 38.2.0.a.1, 190.24.1.?, 465.24.0.?, 17670.48.1.? |
$[(71140469028244895647204282191663973303453705751733971470081/1914606809503225329150695876, 17869072816297222539664034493850137844134815355299961188268697397450181683274629666864609/1914606809503225329150695876)]$ |
172425.h1 |
172425o2 |
172425.h |
172425o |
$2$ |
$5$ |
\( 3 \cdot 5^{2} \cdot 11^{2} \cdot 19 \) |
\( - 3^{2} \cdot 5^{6} \cdot 11^{6} \cdot 19^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$2090$ |
$48$ |
$1$ |
$1.231137839$ |
$1$ |
|
$4$ |
$11340000$ |
$2.655075$ |
$-9358714467168256/22284891$ |
$1.06833$ |
$5.04400$ |
$[0, -1, 1, -13280758, 18633159918]$ |
\(y^2+y=x^3-x^2-13280758x+18633159918\) |
5.12.0.a.2, 38.2.0.a.1, 55.24.0-5.a.2.2, 190.24.1.?, 2090.48.1.? |
$[(2098, 541)]$ |