Learn more

Refine search


Results (21 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-mm images
2652.e1 2652.e 2231317 2^{2} \cdot 3 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 0.7885994900.788599490 [0,1,0,1249,16580][0, 1, 0, -1249, 16580] y2=x3+x21249x+16580y^2=x^3+x^2-1249x+16580 2.3.0.a.1, 4.6.0.b.1, 24.12.0-4.b.1.4, 26.6.0.b.1, 52.12.0.e.1, \ldots
7956.f1 7956.f 22321317 2^{2} \cdot 3^{2} \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [0,0,0,11244,458903][0, 0, 0, -11244, -458903] y2=x311244x458903y^2=x^3-11244x-458903 2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.2, 26.6.0.b.1, 52.12.0.e.1, \ldots
10608.a1 10608.a 2431317 2^{4} \cdot 3 \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [0,1,0,1249,16580][0, -1, 0, -1249, -16580] y2=x3x21249x16580y^2=x^3-x^2-1249x-16580 2.3.0.a.1, 4.6.0.b.1, 24.12.0-4.b.1.4, 26.6.0.b.1, 52.12.0.e.1, \ldots
31824.bc1 31824.bc 24321317 2^{4} \cdot 3^{2} \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [0,0,0,11244,458903][0, 0, 0, -11244, 458903] y2=x311244x+458903y^2=x^3-11244x+458903 2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.2, 26.6.0.b.1, 52.12.0.e.1, \ldots
34476.r1 34476.r 22313217 2^{2} \cdot 3 \cdot 13^{2} \cdot 17 11 Z/2Z\Z/2\Z 1.0726593471.072659347 [0,1,0,211137,37270728][0, 1, 0, -211137, 37270728] y2=x3+x2211137x+37270728y^2=x^3+x^2-211137x+37270728 2.3.0.a.1, 4.6.0.b.1, 24.12.0-4.b.1.2, 26.6.0.b.1, 52.12.0.e.1, \ldots
42432.bc1 42432.bc 2631317 2^{6} \cdot 3 \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [0,1,0,4997,137637][0, -1, 0, -4997, 137637] y2=x3x24997x+137637y^2=x^3-x^2-4997x+137637 2.3.0.a.1, 4.6.0.b.1, 24.12.0-4.b.1.1, 26.6.0.b.1, 52.12.0.e.1, \ldots
42432.ce1 42432.ce 2631317 2^{6} \cdot 3 \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [0,1,0,4997,137637][0, 1, 0, -4997, -137637] y2=x3+x24997x137637y^2=x^3+x^2-4997x-137637 2.3.0.a.1, 4.6.0.b.1, 24.12.0-4.b.1.1, 26.6.0.b.1, 52.12.0.e.1, \ldots
45084.g1 45084.g 22313172 2^{2} \cdot 3 \cdot 13 \cdot 17^{2} 00 Z/2Z\Z/2\Z 11 [0,1,0,361057,83623702][0, -1, 0, -361057, 83623702] y2=x3x2361057x+83623702y^2=x^3-x^2-361057x+83623702 2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 312.24.0.?, \ldots
66300.i1 66300.i 223521317 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17 22 Z/2Z\Z/2\Z 1.3927946621.392794662 [0,1,0,31233,2134962][0, -1, 0, -31233, 2134962] y2=x3x231233x+2134962y^2=x^3-x^2-31233x+2134962 2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 120.12.0.?, \ldots
103428.f1 103428.f 223213217 2^{2} \cdot 3^{2} \cdot 13^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [0,0,0,1900236,1008209891][0, 0, 0, -1900236, -1008209891] y2=x31900236x1008209891y^2=x^3-1900236x-1008209891 2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.4, 26.6.0.b.1, 52.12.0.e.1, \ldots
127296.s1 127296.s 26321317 2^{6} \cdot 3^{2} \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 1.2222458701.222245870 [0,0,0,44976,3671224][0, 0, 0, -44976, 3671224] y2=x344976x+3671224y^2=x^3-44976x+3671224 2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.3, 26.6.0.b.1, 52.12.0.e.1, \ldots
127296.bd1 127296.bd 26321317 2^{6} \cdot 3^{2} \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [0,0,0,44976,3671224][0, 0, 0, -44976, -3671224] y2=x344976x3671224y^2=x^3-44976x-3671224 2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.3, 26.6.0.b.1, 52.12.0.e.1, \ldots
129948.q1 129948.q 223721317 2^{2} \cdot 3 \cdot 7^{2} \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 12.3283154512.32831545 [0,1,0,61217,5809362][0, -1, 0, -61217, -5809362] y2=x3x261217x5809362y^2=x^3-x^2-61217x-5809362 2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 168.12.0.?, \ldots
135252.g1 135252.g 223213172 2^{2} \cdot 3^{2} \cdot 13 \cdot 17^{2} 11 Z/2Z\Z/2\Z 2.5160470542.516047054 [0,0,0,3249516,2254590439][0, 0, 0, -3249516, -2254590439] y2=x33249516x2254590439y^2=x^3-3249516x-2254590439 2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 104.24.0.?, \ldots
137904.bk1 137904.bk 24313217 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [0,1,0,211137,37270728][0, -1, 0, -211137, -37270728] y2=x3x2211137x37270728y^2=x^3-x^2-211137x-37270728 2.3.0.a.1, 4.6.0.b.1, 24.12.0-4.b.1.2, 26.6.0.b.1, 52.12.0.e.1, \ldots
180336.cy1 180336.cy 24313172 2^{4} \cdot 3 \cdot 13 \cdot 17^{2} 11 Z/2Z\Z/2\Z 16.2376777016.23767770 [0,1,0,361057,83623702][0, 1, 0, -361057, -83623702] y2=x3+x2361057x83623702y^2=x^3+x^2-361057x-83623702 2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 312.24.0.?, \ldots
198900.v1 198900.v 2232521317 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [0,0,0,281100,57362875][0, 0, 0, -281100, -57362875] y2=x3281100x57362875y^2=x^3-281100x-57362875 2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 40.12.0-4.b.1.2, 52.12.0.e.1, \ldots
265200.gj1 265200.gj 243521317 2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 8.7741476098.774147609 [0,1,0,31233,2134962][0, 1, 0, -31233, -2134962] y2=x3+x231233x2134962y^2=x^3+x^2-31233x-2134962 2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 120.12.0.?, \ldots
320892.n1 320892.n 2231121317 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [0,1,0,151169,22672608][0, 1, 0, -151169, -22672608] y2=x3+x2151169x22672608y^2=x^3+x^2-151169x-22672608 2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 264.12.0.?, \ldots
389844.s1 389844.s 2232721317 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 1.3372796431.337279643 [0,0,0,550956,157403729][0, 0, 0, -550956, 157403729] y2=x3550956x+157403729y^2=x^3-550956x+157403729 2.3.0.a.1, 4.6.0.b.1, 26.6.0.b.1, 52.12.0.e.1, 56.12.0-4.b.1.2, \ldots
413712.bj1 413712.bj 243213217 2^{4} \cdot 3^{2} \cdot 13^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [0,0,0,1900236,1008209891][0, 0, 0, -1900236, 1008209891] y2=x31900236x+1008209891y^2=x^3-1900236x+1008209891 2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.4, 26.6.0.b.1, 52.12.0.e.1, \ldots
  displayed columns for results