Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
650.e1 |
650d1 |
650.e |
650d |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13 \) |
\( - 2^{7} \cdot 5^{10} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$840$ |
$0.852585$ |
$304175/21632$ |
$0.97871$ |
$5.17570$ |
$[1, 0, 1, 299, 22048]$ |
\(y^2+xy+y=x^3+299x+22048\) |
8.2.0.a.1 |
$[]$ |
650.i1 |
650k1 |
650.i |
650k |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13 \) |
\( - 2^{7} \cdot 5^{4} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$0.033948247$ |
$1$ |
|
$14$ |
$168$ |
$0.047865$ |
$304175/21632$ |
$0.97871$ |
$3.68478$ |
$[1, 1, 1, 12, 181]$ |
\(y^2+xy+y=x^3+x^2+12x+181\) |
8.2.0.a.1 |
$[(25, 117)]$ |
5200.j1 |
5200y1 |
5200.j |
5200y |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 13 \) |
\( - 2^{19} \cdot 5^{10} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1.413150892$ |
$1$ |
|
$4$ |
$20160$ |
$1.545732$ |
$304175/21632$ |
$0.97871$ |
$4.88997$ |
$[0, -1, 0, 4792, -1411088]$ |
\(y^2=x^3-x^2+4792x-1411088\) |
8.2.0.a.1 |
$[(116, 832)]$ |
5200.ba1 |
5200be1 |
5200.ba |
5200be |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 13 \) |
\( - 2^{19} \cdot 5^{4} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$0.750760665$ |
$1$ |
|
$4$ |
$4032$ |
$0.741013$ |
$304175/21632$ |
$0.97871$ |
$3.76139$ |
$[0, 1, 0, 192, -11212]$ |
\(y^2=x^3+x^2+192x-11212\) |
8.2.0.a.1 |
$[(28, 130)]$ |
5850.b1 |
5850v1 |
5850.b |
5850v |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{6} \cdot 5^{4} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$2.033088835$ |
$1$ |
|
$4$ |
$5040$ |
$0.597172$ |
$304175/21632$ |
$0.97871$ |
$3.51132$ |
$[1, -1, 0, 108, -4784]$ |
\(y^2+xy=x^3-x^2+108x-4784\) |
8.2.0.a.1 |
$[(15, -1)]$ |
5850.bz1 |
5850bs1 |
5850.bz |
5850bs |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{6} \cdot 5^{10} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$25200$ |
$1.401890$ |
$304175/21632$ |
$0.97871$ |
$4.62458$ |
$[1, -1, 1, 2695, -595303]$ |
\(y^2+xy+y=x^3-x^2+2695x-595303\) |
8.2.0.a.1 |
$[]$ |
8450.e1 |
8450j1 |
8450.e |
8450j |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{7} \cdot 5^{4} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$28224$ |
$1.330339$ |
$304175/21632$ |
$0.97871$ |
$4.34155$ |
$[1, 1, 0, 2025, 387925]$ |
\(y^2+xy=x^3+x^2+2025x+387925\) |
8.2.0.a.1 |
$[]$ |
8450.t1 |
8450p1 |
8450.t |
8450p |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{7} \cdot 5^{10} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$141120$ |
$2.135059$ |
$304175/21632$ |
$0.97871$ |
$5.40953$ |
$[1, 0, 0, 50612, 48389392]$ |
\(y^2+xy=x^3+50612x+48389392\) |
8.2.0.a.1 |
$[]$ |
20800.bm1 |
20800k1 |
20800.bm |
20800k |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{25} \cdot 5^{10} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$4.620121349$ |
$1$ |
|
$2$ |
$161280$ |
$1.892305$ |
$304175/21632$ |
$0.97871$ |
$4.62646$ |
$[0, -1, 0, 19167, 11269537]$ |
\(y^2=x^3-x^2+19167x+11269537\) |
8.2.0.a.1 |
$[(-192, 689)]$ |
20800.bn1 |
20800ee1 |
20800.bn |
20800ee |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{25} \cdot 5^{4} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$32256$ |
$1.087585$ |
$304175/21632$ |
$0.97871$ |
$3.65523$ |
$[0, -1, 0, 767, -90463]$ |
\(y^2=x^3-x^2+767x-90463\) |
8.2.0.a.1 |
$[]$ |
20800.cs1 |
20800bv1 |
20800.cs |
20800bv |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{25} \cdot 5^{4} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$0.973226521$ |
$1$ |
|
$4$ |
$32256$ |
$1.087585$ |
$304175/21632$ |
$0.97871$ |
$3.65523$ |
$[0, 1, 0, 767, 90463]$ |
\(y^2=x^3+x^2+767x+90463\) |
8.2.0.a.1 |
$[(-21, 256)]$ |
20800.ct1 |
20800cj1 |
20800.ct |
20800cj |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{25} \cdot 5^{10} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$161280$ |
$1.892305$ |
$304175/21632$ |
$0.97871$ |
$4.62646$ |
$[0, 1, 0, 19167, -11269537]$ |
\(y^2=x^3+x^2+19167x-11269537\) |
8.2.0.a.1 |
$[]$ |
31850.p1 |
31850k1 |
31850.p |
31850k |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{7} \cdot 5^{10} \cdot 7^{6} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$241920$ |
$1.825539$ |
$304175/21632$ |
$0.97871$ |
$4.35907$ |
$[1, 1, 0, 14675, -7547875]$ |
\(y^2+xy=x^3+x^2+14675x-7547875\) |
8.2.0.a.1 |
$[]$ |
31850.ck1 |
31850cm1 |
31850.ck |
31850cm |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{7} \cdot 5^{4} \cdot 7^{6} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$0.936699129$ |
$1$ |
|
$4$ |
$48384$ |
$1.020821$ |
$304175/21632$ |
$0.97871$ |
$3.42776$ |
$[1, 0, 0, 587, -60383]$ |
\(y^2+xy=x^3+587x-60383\) |
8.2.0.a.1 |
$[(186, 2455)]$ |
46800.n1 |
46800ej1 |
46800.n |
46800ej |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{19} \cdot 3^{6} \cdot 5^{10} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$604800$ |
$2.095039$ |
$304175/21632$ |
$0.97871$ |
$4.50381$ |
$[0, 0, 0, 43125, 38056250]$ |
\(y^2=x^3+43125x+38056250\) |
8.2.0.a.1 |
$[]$ |
46800.fk1 |
46800ey1 |
46800.fk |
46800ey |
$1$ |
$1$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{19} \cdot 3^{6} \cdot 5^{4} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$120960$ |
$1.290319$ |
$304175/21632$ |
$0.97871$ |
$3.60582$ |
$[0, 0, 0, 1725, 304450]$ |
\(y^2=x^3+1725x+304450\) |
8.2.0.a.1 |
$[]$ |
67600.bo1 |
67600bu1 |
67600.bo |
67600bu |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{19} \cdot 5^{10} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$3386880$ |
$2.828205$ |
$304175/21632$ |
$0.97871$ |
$5.14598$ |
$[0, -1, 0, 809792, -3096921088]$ |
\(y^2=x^3-x^2+809792x-3096921088\) |
8.2.0.a.1 |
$[]$ |
67600.cd1 |
67600cy1 |
67600.cd |
67600cy |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{19} \cdot 5^{4} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$4.292158277$ |
$1$ |
|
$2$ |
$677376$ |
$2.023487$ |
$304175/21632$ |
$0.97871$ |
$4.27769$ |
$[0, 1, 0, 32392, -24762412]$ |
\(y^2=x^3+x^2+32392x-24762412\) |
8.2.0.a.1 |
$[(12614, 1416896)]$ |
76050.j1 |
76050bt1 |
76050.j |
76050bt |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{7} \cdot 3^{6} \cdot 5^{10} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4233600$ |
$2.684364$ |
$304175/21632$ |
$0.97871$ |
$4.93847$ |
$[1, -1, 0, 455508, -1306513584]$ |
\(y^2+xy=x^3-x^2+455508x-1306513584\) |
8.2.0.a.1 |
$[]$ |
76050.gc1 |
76050fz1 |
76050.gc |
76050fz |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{7} \cdot 3^{6} \cdot 5^{4} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$846720$ |
$1.879646$ |
$304175/21632$ |
$0.97871$ |
$4.07928$ |
$[1, -1, 1, 18220, -10455753]$ |
\(y^2+xy+y=x^3-x^2+18220x-10455753\) |
8.2.0.a.1 |
$[]$ |
78650.o1 |
78650bk1 |
78650.o |
78650bk |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \cdot 13 \) |
\( - 2^{7} \cdot 5^{4} \cdot 11^{6} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$240240$ |
$1.246813$ |
$304175/21632$ |
$0.97871$ |
$3.39345$ |
$[1, 1, 0, 1450, -233900]$ |
\(y^2+xy=x^3+x^2+1450x-233900\) |
8.2.0.a.1 |
$[]$ |
78650.cp1 |
78650bv1 |
78650.cp |
78650bv |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \cdot 13 \) |
\( - 2^{7} \cdot 5^{10} \cdot 11^{6} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$4.481159733$ |
$1$ |
|
$2$ |
$1201200$ |
$2.051533$ |
$304175/21632$ |
$0.97871$ |
$4.25009$ |
$[1, 0, 0, 36237, -29309983]$ |
\(y^2+xy=x^3+36237x-29309983\) |
8.2.0.a.1 |
$[(838, 23865)]$ |
187200.w1 |
187200cn1 |
187200.w |
187200cn |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{25} \cdot 3^{6} \cdot 5^{10} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$5.226183923$ |
$1$ |
|
$2$ |
$4838400$ |
$2.441612$ |
$304175/21632$ |
$0.97871$ |
$4.33208$ |
$[0, 0, 0, 172500, 304450000]$ |
\(y^2=x^3+172500x+304450000\) |
8.2.0.a.1 |
$[(684, 27248)]$ |
187200.bh1 |
187200ip1 |
187200.bh |
187200ip |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{25} \cdot 3^{6} \cdot 5^{4} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$967680$ |
$1.636892$ |
$304175/21632$ |
$0.97871$ |
$3.53664$ |
$[0, 0, 0, 6900, -2435600]$ |
\(y^2=x^3+6900x-2435600\) |
8.2.0.a.1 |
$[]$ |
187200.pg1 |
187200by1 |
187200.pg |
187200by |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{25} \cdot 3^{6} \cdot 5^{4} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1.167957852$ |
$1$ |
|
$4$ |
$967680$ |
$1.636892$ |
$304175/21632$ |
$0.97871$ |
$3.53664$ |
$[0, 0, 0, 6900, 2435600]$ |
\(y^2=x^3+6900x+2435600\) |
8.2.0.a.1 |
$[(194, 3328)]$ |
187200.pr1 |
187200og1 |
187200.pr |
187200og |
$1$ |
$1$ |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) |
\( - 2^{25} \cdot 3^{6} \cdot 5^{10} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$4838400$ |
$2.441612$ |
$304175/21632$ |
$0.97871$ |
$4.33208$ |
$[0, 0, 0, 172500, -304450000]$ |
\(y^2=x^3+172500x-304450000\) |
8.2.0.a.1 |
$[]$ |
187850.i1 |
187850bc1 |
187850.i |
187850bc |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 2^{7} \cdot 5^{10} \cdot 13^{2} \cdot 17^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3696000$ |
$2.269192$ |
$304175/21632$ |
$0.97871$ |
$4.16046$ |
$[1, 1, 0, 86550, 108236500]$ |
\(y^2+xy=x^3+x^2+86550x+108236500\) |
8.2.0.a.1 |
$[]$ |
187850.bn1 |
187850k1 |
187850.bn |
187850k |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13 \cdot 17^{2} \) |
\( - 2^{7} \cdot 5^{4} \cdot 13^{2} \cdot 17^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$2.761928254$ |
$1$ |
|
$2$ |
$739200$ |
$1.464472$ |
$304175/21632$ |
$0.97871$ |
$3.36524$ |
$[1, 0, 0, 3462, 865892]$ |
\(y^2+xy=x^3+3462x+865892\) |
8.2.0.a.1 |
$[(16, 954)]$ |
234650.bm1 |
234650bm1 |
234650.bm |
234650bm |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13 \cdot 19^{2} \) |
\( - 2^{7} \cdot 5^{4} \cdot 13^{2} \cdot 19^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1182384$ |
$1.520084$ |
$304175/21632$ |
$0.97871$ |
$3.35867$ |
$[1, 0, 1, 4324, -1208102]$ |
\(y^2+xy+y=x^3+4324x-1208102\) |
8.2.0.a.1 |
$[]$ |
234650.do1 |
234650do1 |
234650.do |
234650do |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13 \cdot 19^{2} \) |
\( - 2^{7} \cdot 5^{10} \cdot 13^{2} \cdot 19^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$8.142984176$ |
$1$ |
|
$0$ |
$5911920$ |
$2.324802$ |
$304175/21632$ |
$0.97871$ |
$4.13959$ |
$[1, 1, 1, 108112, -151012719]$ |
\(y^2+xy+y=x^3+x^2+108112x-151012719\) |
8.2.0.a.1 |
$[(12399/5, 592797/5)]$ |
254800.cc1 |
254800cc1 |
254800.cc |
254800cc |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{19} \cdot 5^{4} \cdot 7^{6} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$2.303481462$ |
$1$ |
|
$2$ |
$1161216$ |
$1.713968$ |
$304175/21632$ |
$0.97871$ |
$3.52335$ |
$[0, -1, 0, 9392, 3864512]$ |
\(y^2=x^3-x^2+9392x+3864512\) |
8.2.0.a.1 |
$[(-107, 1274)]$ |
254800.fh1 |
254800fh1 |
254800.fh |
254800fh |
$1$ |
$1$ |
\( 2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{19} \cdot 5^{10} \cdot 7^{6} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$2.893500213$ |
$1$ |
|
$2$ |
$5806080$ |
$2.518688$ |
$304175/21632$ |
$0.97871$ |
$4.29909$ |
$[0, 1, 0, 234792, 483533588]$ |
\(y^2=x^3+x^2+234792x+483533588\) |
8.2.0.a.1 |
$[(982, 40768)]$ |
270400.co1 |
270400co1 |
270400.co |
270400co |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{25} \cdot 5^{4} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1.355091282$ |
$1$ |
|
$4$ |
$5419008$ |
$2.370060$ |
$304175/21632$ |
$0.97871$ |
$4.13607$ |
$[0, -1, 0, 129567, -198228863]$ |
\(y^2=x^3-x^2+129567x-198228863\) |
8.2.0.a.1 |
$[(3597, 216320)]$ |
270400.cp1 |
270400cp1 |
270400.cp |
270400cp |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{25} \cdot 5^{10} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$8.259306194$ |
$1$ |
|
$2$ |
$27095040$ |
$3.174778$ |
$304175/21632$ |
$0.97871$ |
$4.90813$ |
$[0, -1, 0, 3239167, 24772129537]$ |
\(y^2=x^3-x^2+3239167x+24772129537\) |
8.2.0.a.1 |
$[(102081, 32620288)]$ |
270400.hx1 |
270400hx1 |
270400.hx |
270400hx |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{25} \cdot 5^{10} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$25$ |
$5$ |
$0$ |
$27095040$ |
$3.174778$ |
$304175/21632$ |
$0.97871$ |
$4.90813$ |
$[0, 1, 0, 3239167, -24772129537]$ |
\(y^2=x^3+x^2+3239167x-24772129537\) |
8.2.0.a.1 |
$[]$ |
270400.hy1 |
270400hy1 |
270400.hy |
270400hy |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 13^{2} \) |
\( - 2^{25} \cdot 5^{4} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5419008$ |
$2.370060$ |
$304175/21632$ |
$0.97871$ |
$4.13607$ |
$[0, 1, 0, 129567, 198228863]$ |
\(y^2=x^3+x^2+129567x+198228863\) |
8.2.0.a.1 |
$[]$ |
286650.dd1 |
286650dd1 |
286650.dd |
286650dd |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{6} \cdot 5^{4} \cdot 7^{6} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1.046371323$ |
$1$ |
|
$4$ |
$1451520$ |
$1.570127$ |
$304175/21632$ |
$0.97871$ |
$3.35296$ |
$[1, -1, 0, 5283, 1630341]$ |
\(y^2+xy=x^3-x^2+5283x+1630341\) |
8.2.0.a.1 |
$[(79, 1553)]$ |
286650.lx1 |
286650lx1 |
286650.lx |
286650lx |
$1$ |
$1$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13 \) |
\( - 2^{7} \cdot 3^{6} \cdot 5^{10} \cdot 7^{6} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7257600$ |
$2.374847$ |
$304175/21632$ |
$0.97871$ |
$4.12143$ |
$[1, -1, 1, 132070, 203924697]$ |
\(y^2+xy+y=x^3-x^2+132070x+203924697\) |
8.2.0.a.1 |
$[]$ |
343850.bj1 |
343850bj1 |
343850.bj |
343850bj |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13 \cdot 23^{2} \) |
\( - 2^{7} \cdot 5^{10} \cdot 13^{2} \cdot 23^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$6.702742299$ |
$1$ |
|
$0$ |
$10644480$ |
$2.420330$ |
$304175/21632$ |
$0.97871$ |
$4.10543$ |
$[1, 0, 1, 158424, -267944202]$ |
\(y^2+xy+y=x^3+158424x-267944202\) |
8.2.0.a.1 |
$[(44844/7, 8545718/7)]$ |
343850.cs1 |
343850cs1 |
343850.cs |
343850cs |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13 \cdot 23^{2} \) |
\( - 2^{7} \cdot 5^{4} \cdot 13^{2} \cdot 23^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2128896$ |
$1.615612$ |
$304175/21632$ |
$0.97871$ |
$3.34792$ |
$[1, 1, 1, 6337, -2141019]$ |
\(y^2+xy+y=x^3+x^2+6337x-2141019\) |
8.2.0.a.1 |
$[]$ |
414050.cl1 |
414050cl1 |
414050.cl |
414050cl |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{7} \cdot 5^{4} \cdot 7^{6} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$5.228764376$ |
$1$ |
|
$0$ |
$8128512$ |
$2.303295$ |
$304175/21632$ |
$0.97871$ |
$3.93787$ |
$[1, 0, 1, 99199, -132760652]$ |
\(y^2+xy+y=x^3+99199x-132760652\) |
8.2.0.a.1 |
$[(44437/4, 9310029/4)]$ |
414050.ez1 |
414050ez1 |
414050.ez |
414050ez |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{7} \cdot 5^{10} \cdot 7^{6} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$4.856796841$ |
$1$ |
|
$2$ |
$40642560$ |
$3.108013$ |
$304175/21632$ |
$0.97871$ |
$4.68449$ |
$[1, 1, 1, 2479987, -16595081469]$ |
\(y^2+xy+y=x^3+x^2+2479987x-16595081469\) |
8.2.0.a.1 |
$[(29931, 5168940)]$ |