Learn more

Refine search


Results (21 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-mm images
2652.f4 2652.f 2231317 2^{2} \cdot 3 \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [0,1,0,19612,137676][0, 1, 0, 19612, -137676] y2=x3+x2+19612x137676y^2=x^3+x^2+19612x-137676 2.3.0.a.1, 3.8.0-3.a.1.1, 6.24.0-6.a.1.2, 52.6.0.c.1, 68.6.0.a.1, \ldots
7956.b4 7956.b 22321317 2^{2} \cdot 3^{2} \cdot 13 \cdot 17 11 Z/6Z\Z/6\Z 3.3649724823.364972482 [0,0,0,176505,3893758][0, 0, 0, 176505, 3893758] y2=x3+176505x+3893758y^2=x^3+176505x+3893758 2.3.0.a.1, 3.8.0-3.a.1.2, 6.24.0-6.a.1.4, 52.6.0.c.1, 68.6.0.a.1, \ldots
10608.j4 10608.j 2431317 2^{4} \cdot 3 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 4.6605096734.660509673 [0,1,0,19612,137676][0, -1, 0, 19612, 137676] y2=x3x2+19612x+137676y^2=x^3-x^2+19612x+137676 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.9, 52.6.0.c.1, \ldots
31824.z4 31824.z 24321317 2^{4} \cdot 3^{2} \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 2.0823861512.082386151 [0,0,0,176505,3893758][0, 0, 0, 176505, -3893758] y2=x3+176505x3893758y^2=x^3+176505x-3893758 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.3, 52.6.0.c.1, \ldots
34476.p4 34476.p 22313217 2^{2} \cdot 3 \cdot 13^{2} \cdot 17 11 Z/2Z\Z/2\Z 7.9838713977.983871397 [0,1,0,3314372,315731740][0, 1, 0, 3314372, -315731740] y2=x3+x2+3314372x315731740y^2=x^3+x^2+3314372x-315731740 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.5, 39.8.0-3.a.1.2, \ldots
42432.g4 42432.g 2631317 2^{6} \cdot 3 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 7.4948908197.494890819 [0,1,0,78447,1179855][0, -1, 0, 78447, -1179855] y2=x3x2+78447x1179855y^2=x^3-x^2+78447x-1179855 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0-6.a.1.3, 52.6.0.c.1, \ldots
42432.cb4 42432.cb 2631317 2^{6} \cdot 3 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 4.6815642884.681564288 [0,1,0,78447,1179855][0, 1, 0, 78447, 1179855] y2=x3+x2+78447x+1179855y^2=x^3+x^2+78447x+1179855 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0-6.a.1.14, 52.6.0.c.1, \ldots
45084.f4 45084.f 22313172 2^{2} \cdot 3 \cdot 13 \cdot 17^{2} 11 Z/2Z\Z/2\Z 13.2387963913.23879639 [0,1,0,5667772,710409000][0, -1, 0, 5667772, -710409000] y2=x3x2+5667772x710409000y^2=x^3-x^2+5667772x-710409000 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.4, 51.8.0-3.a.1.1, \ldots
66300.t4 66300.t 223521317 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 2.7035718582.703571858 [0,1,0,490292,18190088][0, -1, 0, 490292, -18190088] y2=x3x2+490292x18190088y^2=x^3-x^2+490292x-18190088 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 15.8.0-3.a.1.1, 30.24.0-6.a.1.1, \ldots
103428.s4 103428.s 223213217 2^{2} \cdot 3^{2} \cdot 13^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [0,0,0,29829345,8554586326][0, 0, 0, 29829345, 8554586326] y2=x3+29829345x+8554586326y^2=x^3+29829345x+8554586326 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.11, 39.8.0-3.a.1.1, \ldots
127296.bp4 127296.bp 26321317 2^{6} \cdot 3^{2} \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 3.0822670303.082267030 [0,0,0,706020,31150064][0, 0, 0, 706020, 31150064] y2=x3+706020x+31150064y^2=x^3+706020x+31150064 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0-6.a.1.11, 52.6.0.c.1, \ldots
127296.cp4 127296.cp 26321317 2^{6} \cdot 3^{2} \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [0,0,0,706020,31150064][0, 0, 0, 706020, -31150064] y2=x3+706020x31150064y^2=x^3+706020x-31150064 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0-6.a.1.6, 52.6.0.c.1, \ldots
129948.l4 129948.l 223721317 2^{2} \cdot 3 \cdot 7^{2} \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [0,1,0,960972,49144824][0, -1, 0, 960972, 49144824] y2=x3x2+960972x+49144824y^2=x^3-x^2+960972x+49144824 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 21.8.0-3.a.1.2, 42.24.0-6.a.1.4, \ldots
135252.o4 135252.o 223213172 2^{2} \cdot 3^{2} \cdot 13 \cdot 17^{2} 00 Z/2Z\Z/2\Z 11 [0,0,0,51009945,19130033054][0, 0, 0, 51009945, 19130033054] y2=x3+51009945x+19130033054y^2=x^3+51009945x+19130033054 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.10, 51.8.0-3.a.1.2, \ldots
137904.o4 137904.o 24313217 2^{4} \cdot 3 \cdot 13^{2} \cdot 17 00 Z/2Z\Z/2\Z 11 [0,1,0,3314372,315731740][0, -1, 0, 3314372, 315731740] y2=x3x2+3314372x+315731740y^2=x^3-x^2+3314372x+315731740 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.8, 52.6.0.c.1, \ldots
180336.cj4 180336.cj 24313172 2^{4} \cdot 3 \cdot 13 \cdot 17^{2} 00 Z/2Z\Z/2\Z 11 [0,1,0,5667772,710409000][0, 1, 0, 5667772, 710409000] y2=x3+x2+5667772x+710409000y^2=x^3+x^2+5667772x+710409000 2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.3, 52.6.0.c.1, 68.6.0.a.1, \ldots
198900.cn4 198900.cn 2232521317 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 27.7765413527.77654135 [0,0,0,4412625,486719750][0, 0, 0, 4412625, 486719750] y2=x3+4412625x+486719750y^2=x^3+4412625x+486719750 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 15.8.0-3.a.1.2, 30.24.0-6.a.1.2, \ldots
265200.eb4 265200.eb 243521317 2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [0,1,0,490292,18190088][0, 1, 0, 490292, 18190088] y2=x3+x2+490292x+18190088y^2=x^3+x^2+490292x+18190088 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 52.6.0.c.1, 60.24.0-6.a.1.2, \ldots
320892.x4 320892.x 2231121317 2^{2} \cdot 3 \cdot 11^{2} \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 1.8311429701.831142970 [0,1,0,2373012,192738852][0, 1, 0, 2373012, 192738852] y2=x3+x2+2373012x+192738852y^2=x^3+x^2+2373012x+192738852 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 33.8.0-3.a.1.1, 52.6.0.c.1, \ldots
389844.bt4 389844.bt 2232721317 2^{2} \cdot 3^{2} \cdot 7^{2} \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [0,0,0,8648745,1335558994][0, 0, 0, 8648745, -1335558994] y2=x3+8648745x1335558994y^2=x^3+8648745x-1335558994 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 21.8.0-3.a.1.1, 42.24.0-6.a.1.3, \ldots
413712.ci4 413712.ci 243213217 2^{4} \cdot 3^{2} \cdot 13^{2} \cdot 17 22 Z/2Z\Z/2\Z 24.1190731924.11907319 [0,0,0,29829345,8554586326][0, 0, 0, 29829345, -8554586326] y2=x3+29829345x8554586326y^2=x^3+29829345x-8554586326 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.2, 52.6.0.c.1, \ldots
  displayed columns for results