Learn more

Refine search


Results (28 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
4056.l1 4056.l \( 2^{3} \cdot 3 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.304833129$ $[0, 1, 0, 48, 144]$ \(y^2=x^3+x^2+48x+144\) 4.8.0.b.1, 52.16.0-4.b.1.1
4056.q1 4056.q \( 2^{3} \cdot 3 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 8056, 284064]$ \(y^2=x^3+x^2+8056x+284064\) 4.16.0-4.b.1.1
8112.b1 8112.b \( 2^{4} \cdot 3 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.570319044$ $[0, -1, 0, 48, -144]$ \(y^2=x^3-x^2+48x-144\) 4.8.0.b.1, 52.16.0-4.b.1.1
8112.n1 8112.n \( 2^{4} \cdot 3 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $3.339875908$ $[0, -1, 0, 8056, -284064]$ \(y^2=x^3-x^2+8056x-284064\) 4.16.0-4.b.1.1
12168.d1 12168.d \( 2^{3} \cdot 3^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $4.675240145$ $[0, 0, 0, 72501, -7597226]$ \(y^2=x^3+72501x-7597226\) 4.8.0.b.1, 12.16.0-4.b.1.1
12168.u1 12168.u \( 2^{3} \cdot 3^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 429, -3458]$ \(y^2=x^3+429x-3458\) 4.8.0.b.1, 156.16.0.?
24336.i1 24336.i \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 72501, 7597226]$ \(y^2=x^3+72501x+7597226\) 4.8.0.b.1, 12.16.0-4.b.1.1
24336.cb1 24336.cb \( 2^{4} \cdot 3^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 429, 3458]$ \(y^2=x^3+429x+3458\) 4.8.0.b.1, 156.16.0.?
32448.f1 32448.f \( 2^{6} \cdot 3 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.482386668$ $[0, -1, 0, 32223, 2240289]$ \(y^2=x^3-x^2+32223x+2240289\) 4.8.0.b.1, 8.16.0-4.b.1.1
32448.bq1 32448.bq \( 2^{6} \cdot 3 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.710627852$ $[0, -1, 0, 191, 961]$ \(y^2=x^3-x^2+191x+961\) 4.8.0.b.1, 104.16.0.?
32448.cb1 32448.cb \( 2^{6} \cdot 3 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.903532528$ $[0, 1, 0, 32223, -2240289]$ \(y^2=x^3+x^2+32223x-2240289\) 4.8.0.b.1, 8.16.0-4.b.1.1
32448.dk1 32448.dk \( 2^{6} \cdot 3 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.286283045$ $[0, 1, 0, 191, -961]$ \(y^2=x^3+x^2+191x-961\) 4.8.0.b.1, 104.16.0.?
97344.q1 97344.q \( 2^{6} \cdot 3^{2} \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $2.507445461$ $[0, 0, 0, 1716, -27664]$ \(y^2=x^3+1716x-27664\) 4.8.0.b.1, 312.16.0.?
97344.r1 97344.r \( 2^{6} \cdot 3^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.132091015$ $[0, 0, 0, 1716, 27664]$ \(y^2=x^3+1716x+27664\) 4.8.0.b.1, 312.16.0.?
97344.fy1 97344.fy \( 2^{6} \cdot 3^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 290004, -60777808]$ \(y^2=x^3+290004x-60777808\) 4.8.0.b.1, 24.16.0-4.b.1.1
97344.fz1 97344.fz \( 2^{6} \cdot 3^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $4.474402610$ $[0, 0, 0, 290004, 60777808]$ \(y^2=x^3+290004x+60777808\) 4.8.0.b.1, 24.16.0-4.b.1.1
101400.y1 101400.y \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.897114620$ $[0, -1, 0, 1192, 15612]$ \(y^2=x^3-x^2+1192x+15612\) 4.8.0.b.1, 260.16.0.?
101400.z1 101400.z \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 201392, 35105212]$ \(y^2=x^3-x^2+201392x+35105212\) 4.8.0.b.1, 20.16.0-4.b.1.1
198744.e1 198744.e \( 2^{3} \cdot 3 \cdot 7^{2} \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $3.264972091$ $[0, -1, 0, 394728, -96644484]$ \(y^2=x^3-x^2+394728x-96644484\) 4.8.0.b.1, 28.16.0-4.b.1.1
198744.bo1 198744.bo \( 2^{3} \cdot 3 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.495963079$ $[0, -1, 0, 2336, -44708]$ \(y^2=x^3-x^2+2336x-44708\) 4.8.0.b.1, 364.16.0.?
202800.hv1 202800.hv \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 201392, -35105212]$ \(y^2=x^3+x^2+201392x-35105212\) 4.8.0.b.1, 20.16.0-4.b.1.1
202800.hw1 202800.hw \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 1192, -15612]$ \(y^2=x^3+x^2+1192x-15612\) 4.8.0.b.1, 260.16.0.?
304200.cz1 304200.cz \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $6.058611584$ $[0, 0, 0, 10725, -432250]$ \(y^2=x^3+10725x-432250\) 4.8.0.b.1, 780.16.0.?
304200.da1 304200.da \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 1812525, -949653250]$ \(y^2=x^3+1812525x-949653250\) 4.8.0.b.1, 60.16.0-4.b.1.1
397488.fx1 397488.fx \( 2^{4} \cdot 3 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.895622171$ $[0, 1, 0, 394728, 96644484]$ \(y^2=x^3+x^2+394728x+96644484\) 4.8.0.b.1, 28.16.0-4.b.1.1
397488.jq1 397488.jq \( 2^{4} \cdot 3 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.569328689$ $[0, 1, 0, 2336, 44708]$ \(y^2=x^3+x^2+2336x+44708\) 4.8.0.b.1, 364.16.0.?
490776.bw1 490776.bw \( 2^{3} \cdot 3 \cdot 11^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.177240673$ $[0, 1, 0, 5768, -168544]$ \(y^2=x^3+x^2+5768x-168544\) 4.8.0.b.1, 572.16.0.?
490776.cw1 490776.cw \( 2^{3} \cdot 3 \cdot 11^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 974736, -374190192]$ \(y^2=x^3+x^2+974736x-374190192\) 4.8.0.b.1, 44.16.0-4.b.1.1
  displayed columns for results