Learn more

Refine search


Results (35 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
1560.b3 1560.b \( 2^{3} \cdot 3 \cdot 5 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -416, 1980]$ \(y^2=x^3-x^2-416x+1980\) 2.6.0.a.1, 12.12.0-2.a.1.1, 40.12.0-2.a.1.1, 52.12.0-2.a.1.1, 120.24.0.?, $\ldots$
3120.p3 3120.p \( 2^{4} \cdot 3 \cdot 5 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.567805800$ $[0, 1, 0, -416, -1980]$ \(y^2=x^3+x^2-416x-1980\) 2.6.0.a.1, 12.12.0-2.a.1.1, 40.12.0-2.a.1.1, 52.12.0-2.a.1.1, 120.24.0.?, $\ldots$
4680.p3 4680.p \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.089061123$ $[0, 0, 0, -3747, -49714]$ \(y^2=x^3-3747x-49714\) 2.6.0.a.1, 4.12.0-2.a.1.1, 120.24.0.?, 156.24.0.?, 520.24.0.?, $\ldots$
7800.u3 7800.u \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.518167097$ $[0, 1, 0, -10408, 226688]$ \(y^2=x^3+x^2-10408x+226688\) 2.6.0.a.1, 8.12.0-2.a.1.1, 60.12.0-2.a.1.1, 120.24.0.?, 156.12.0.?, $\ldots$
9360.bq3 9360.bq \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -3747, 49714]$ \(y^2=x^3-3747x+49714\) 2.6.0.a.1, 4.12.0-2.a.1.1, 120.24.0.?, 156.24.0.?, 520.24.0.?, $\ldots$
12480.bl3 12480.bl \( 2^{6} \cdot 3 \cdot 5 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.830371779$ $[0, -1, 0, -1665, -14175]$ \(y^2=x^3-x^2-1665x-14175\) 2.6.0.a.1, 20.12.0-2.a.1.1, 24.12.0-2.a.1.1, 104.12.0.?, 120.24.0.?, $\ldots$
12480.cs3 12480.cs \( 2^{6} \cdot 3 \cdot 5 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.067258755$ $[0, 1, 0, -1665, 14175]$ \(y^2=x^3+x^2-1665x+14175\) 2.6.0.a.1, 20.12.0-2.a.1.1, 24.12.0-2.a.1.1, 104.12.0.?, 120.24.0.?, $\ldots$
15600.m3 15600.m \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.973256187$ $[0, -1, 0, -10408, -226688]$ \(y^2=x^3-x^2-10408x-226688\) 2.6.0.a.1, 8.12.0-2.a.1.1, 60.12.0-2.a.1.1, 120.24.0.?, 156.12.0.?, $\ldots$
20280.n3 20280.n \( 2^{3} \cdot 3 \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $6.107145592$ $[0, -1, 0, -70360, 4068700]$ \(y^2=x^3-x^2-70360x+4068700\) 2.6.0.a.1, 4.12.0-2.a.1.1, 120.24.0.?, 156.24.0.?, 520.24.0.?, $\ldots$
23400.s3 23400.s \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -93675, -6214250]$ \(y^2=x^3-93675x-6214250\) 2.6.0.a.1, 20.12.0-2.a.1.1, 24.12.0-2.a.1.1, 104.12.0.?, 120.24.0.?, $\ldots$
37440.bf3 37440.bf \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.195513544$ $[0, 0, 0, -14988, 397712]$ \(y^2=x^3-14988x+397712\) 2.6.0.a.1, 8.12.0-2.a.1.1, 60.12.0-2.a.1.1, 120.24.0.?, 156.12.0.?, $\ldots$
37440.bs3 37440.bs \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -14988, -397712]$ \(y^2=x^3-14988x-397712\) 2.6.0.a.1, 8.12.0-2.a.1.1, 60.12.0-2.a.1.1, 120.24.0.?, 156.12.0.?, $\ldots$
40560.cs3 40560.cs \( 2^{4} \cdot 3 \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.198164497$ $[0, 1, 0, -70360, -4068700]$ \(y^2=x^3+x^2-70360x-4068700\) 2.6.0.a.1, 4.12.0-2.a.1.1, 120.24.0.?, 156.24.0.?, 520.24.0.?, $\ldots$
46800.df3 46800.df \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -93675, 6214250]$ \(y^2=x^3-93675x+6214250\) 2.6.0.a.1, 20.12.0-2.a.1.1, 24.12.0-2.a.1.1, 104.12.0.?, 120.24.0.?, $\ldots$
60840.q3 60840.q \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -633243, -109221658]$ \(y^2=x^3-633243x-109221658\) 2.6.0.a.1, 12.12.0-2.a.1.1, 40.12.0-2.a.1.2, 52.12.0-2.a.1.1, 120.24.0.?, $\ldots$
62400.cl3 62400.cl \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -41633, 1855137]$ \(y^2=x^3-x^2-41633x+1855137\) 2.6.0.a.1, 4.12.0-2.a.1.1, 120.24.0.?, 156.24.0.?, 520.24.0.?, $\ldots$
62400.fx3 62400.fx \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -41633, -1855137]$ \(y^2=x^3+x^2-41633x-1855137\) 2.6.0.a.1, 4.12.0-2.a.1.1, 120.24.0.?, 156.24.0.?, 520.24.0.?, $\ldots$
76440.cx3 76440.cx \( 2^{3} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -20400, -638352]$ \(y^2=x^3+x^2-20400x-638352\) 2.6.0.a.1, 84.12.0.?, 120.12.0.?, 156.12.0.?, 280.12.0.?, $\ldots$
101400.cr3 101400.cr \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -1759008, 505069488]$ \(y^2=x^3+x^2-1759008x+505069488\) 2.6.0.a.1, 20.12.0-2.a.1.1, 24.12.0-2.a.1.2, 104.12.0.?, 120.24.0.?, $\ldots$
121680.bc3 121680.bc \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $6.903398310$ $[0, 0, 0, -633243, 109221658]$ \(y^2=x^3-633243x+109221658\) 2.6.0.a.1, 12.12.0-2.a.1.1, 40.12.0-2.a.1.2, 52.12.0-2.a.1.1, 120.24.0.?, $\ldots$
152880.cp3 152880.cp \( 2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.282926312$ $[0, -1, 0, -20400, 638352]$ \(y^2=x^3-x^2-20400x+638352\) 2.6.0.a.1, 84.12.0.?, 120.12.0.?, 156.12.0.?, 280.12.0.?, $\ldots$
162240.r3 162240.r \( 2^{6} \cdot 3 \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -281441, -32268159]$ \(y^2=x^3-x^2-281441x-32268159\) 2.6.0.a.1, 8.12.0-2.a.1.1, 60.12.0-2.a.1.2, 120.24.0.?, 156.12.0.?, $\ldots$
162240.fo3 162240.fo \( 2^{6} \cdot 3 \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -281441, 32268159]$ \(y^2=x^3+x^2-281441x+32268159\) 2.6.0.a.1, 8.12.0-2.a.1.1, 60.12.0-2.a.1.2, 120.24.0.?, 156.12.0.?, $\ldots$
187200.hi3 187200.hi \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $6.902159629$ $[0, 0, 0, -374700, 49714000]$ \(y^2=x^3-374700x+49714000\) 2.6.0.a.1, 12.12.0-2.a.1.1, 40.12.0-2.a.1.1, 52.12.0-2.a.1.2, 120.24.0.?, $\ldots$
187200.jf3 187200.jf \( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.591699807$ $[0, 0, 0, -374700, -49714000]$ \(y^2=x^3-374700x-49714000\) 2.6.0.a.1, 12.12.0-2.a.1.1, 40.12.0-2.a.1.1, 52.12.0-2.a.1.2, 120.24.0.?, $\ldots$
188760.n3 188760.n \( 2^{3} \cdot 3 \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.753443147$ $[0, -1, 0, -50376, -2433924]$ \(y^2=x^3-x^2-50376x-2433924\) 2.6.0.a.1, 120.12.0.?, 132.12.0.?, 156.12.0.?, 440.12.0.?, $\ldots$
202800.dk3 202800.dk \( 2^{4} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $6.156184614$ $[0, -1, 0, -1759008, -505069488]$ \(y^2=x^3-x^2-1759008x-505069488\) 2.6.0.a.1, 20.12.0-2.a.1.1, 24.12.0-2.a.1.2, 104.12.0.?, 120.24.0.?, $\ldots$
229320.j3 229320.j \( 2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -183603, 17051902]$ \(y^2=x^3-183603x+17051902\) 2.6.0.a.1, 28.12.0-2.a.1.1, 120.12.0.?, 156.12.0.?, 520.12.0.?, $\ldots$
304200.dh3 304200.dh \( 2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $15.83666007$ $[0, 0, 0, -15831075, -13652707250]$ \(y^2=x^3-15831075x-13652707250\) 2.6.0.a.1, 8.12.0-2.a.1.2, 60.12.0-2.a.1.1, 120.24.0.?, 156.12.0.?, $\ldots$
377520.eu3 377520.eu \( 2^{4} \cdot 3 \cdot 5 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.016072319$ $[0, 1, 0, -50376, 2433924]$ \(y^2=x^3+x^2-50376x+2433924\) 2.6.0.a.1, 120.12.0.?, 132.12.0.?, 156.12.0.?, 440.12.0.?, $\ldots$
382200.em3 382200.em \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -510008, -78773988]$ \(y^2=x^3-x^2-510008x-78773988\) 2.6.0.a.1, 56.12.0-2.a.1.1, 120.12.0.?, 156.12.0.?, 420.12.0.?, $\ldots$
450840.cn3 450840.cn \( 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 1, 0, -120320, 9006000]$ \(y^2=x^3+x^2-120320x+9006000\) 2.6.0.a.1, 120.12.0.?, 156.12.0.?, 204.12.0.?, 520.12.0.?, $\ldots$
458640.fs3 458640.fs \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.908046965$ $[0, 0, 0, -183603, -17051902]$ \(y^2=x^3-183603x-17051902\) 2.6.0.a.1, 28.12.0-2.a.1.1, 120.12.0.?, 156.12.0.?, 520.12.0.?, $\ldots$
486720.md3 486720.md \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $7.472948591$ $[0, 0, 0, -2532972, -873773264]$ \(y^2=x^3-2532972x-873773264\) 2.6.0.a.1, 20.12.0-2.a.1.2, 24.12.0-2.a.1.1, 104.12.0.?, 120.24.0.?, $\ldots$
486720.nf3 486720.nf \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -2532972, 873773264]$ \(y^2=x^3-2532972x+873773264\) 2.6.0.a.1, 20.12.0-2.a.1.2, 24.12.0-2.a.1.1, 104.12.0.?, 120.24.0.?, $\ldots$
  displayed columns for results