Learn more

Refine search


Results (1-50 of 95 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
38.a3 38.a \( 2 \cdot 19 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, 9, 90]$ \(y^2+xy+y=x^3+9x+90\) 3.24.0-3.a.1.1, 9.72.0-9.b.1.1, 152.2.0.?, 171.216.4.?, 456.48.1.?, $\ldots$
304.c3 304.c \( 2^{4} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 152, -5776]$ \(y^2=x^3-x^2+152x-5776\) 3.12.0.a.1, 9.36.0.b.1, 12.24.0-3.a.1.1, 36.72.0-9.b.1.1, 152.2.0.?, $\ldots$
342.e3 342.e \( 2 \cdot 3^{2} \cdot 19 \) $0$ $\Z/3\Z$ $1$ $[1, -1, 1, 85, -2437]$ \(y^2+xy+y=x^3-x^2+85x-2437\) 3.24.0-3.a.1.1, 9.72.0-9.b.1.1, 152.2.0.?, 171.216.4.?, 456.48.1.?, $\ldots$
722.e3 722.e \( 2 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.258225187$ $[1, 1, 1, 3422, -612177]$ \(y^2+xy+y=x^3+x^2+3422x-612177\) 3.12.0.a.1, 9.36.0.b.1, 24.24.0-3.a.1.3, 57.24.0-3.a.1.1, 72.72.0.?, $\ldots$
950.d3 950.d \( 2 \cdot 5^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $0.062920129$ $[1, 1, 1, 237, 11281]$ \(y^2+xy+y=x^3+x^2+237x+11281\) 3.12.0.a.1, 9.36.0.b.1, 15.24.0-3.a.1.1, 45.72.0-9.b.1.1, 152.2.0.?, $\ldots$
1216.e3 1216.e \( 2^{6} \cdot 19 \) $1$ $\mathsf{trivial}$ $0.834776094$ $[0, -1, 0, 607, 45601]$ \(y^2=x^3-x^2+607x+45601\) 3.12.0.a.1, 9.36.0.b.1, 24.24.0-3.a.1.1, 72.72.0.?, 114.24.0.?, $\ldots$
1216.m3 1216.m \( 2^{6} \cdot 19 \) $1$ $\mathsf{trivial}$ $0.566135023$ $[0, 1, 0, 607, -45601]$ \(y^2=x^3+x^2+607x-45601\) 3.12.0.a.1, 9.36.0.b.1, 24.24.0-3.a.1.2, 72.72.0.?, 152.2.0.?, $\ldots$
1862.b3 1862.b \( 2 \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 465, -30491]$ \(y^2+xy=x^3+x^2+465x-30491\) 3.12.0.a.1, 9.36.0.b.1, 21.24.0-3.a.1.1, 63.72.0-9.b.1.1, 152.2.0.?, $\ldots$
2736.n3 2736.n \( 2^{4} \cdot 3^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $1.513162762$ $[0, 0, 0, 1365, 154586]$ \(y^2=x^3+1365x+154586\) 3.12.0.a.1, 9.36.0.b.1, 12.24.0-3.a.1.1, 36.72.0-9.b.1.1, 152.2.0.?, $\ldots$
4598.p3 4598.p \( 2 \cdot 11^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $0.946933650$ $[1, 0, 0, 1147, -118975]$ \(y^2+xy=x^3+1147x-118975\) 3.12.0.a.1, 9.36.0.b.1, 33.24.0-3.a.1.1, 99.72.0.?, 152.2.0.?, $\ldots$
5776.m3 5776.m \( 2^{4} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $2.757748041$ $[0, 1, 0, 54752, 39288820]$ \(y^2=x^3+x^2+54752x+39288820\) 3.12.0.a.1, 9.36.0.b.1, 24.24.0-3.a.1.4, 72.72.0.?, 152.2.0.?, $\ldots$
6422.h3 6422.h \( 2 \cdot 13^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, 1602, 196676]$ \(y^2+xy=x^3+1602x+196676\) 3.12.0.a.1, 9.36.0.b.1, 39.24.0-3.a.1.1, 117.72.0.?, 152.2.0.?, $\ldots$
6498.f3 6498.f \( 2 \cdot 3^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $2.960817249$ $[1, -1, 0, 30798, 16559572]$ \(y^2+xy=x^3-x^2+30798x+16559572\) 3.12.0.a.1, 9.36.0.b.1, 24.24.0-3.a.1.3, 57.24.0-3.a.1.1, 72.72.0.?, $\ldots$
7600.n3 7600.n \( 2^{4} \cdot 5^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 3792, -714412]$ \(y^2=x^3+x^2+3792x-714412\) 3.12.0.a.1, 9.36.0.b.1, 60.24.0-3.a.1.1, 152.2.0.?, 171.108.4.?, $\ldots$
8550.m3 8550.m \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $1.882012280$ $[1, -1, 0, 2133, -302459]$ \(y^2+xy=x^3-x^2+2133x-302459\) 3.12.0.a.1, 9.36.0.b.1, 15.24.0-3.a.1.1, 45.72.0-9.b.1.1, 152.2.0.?, $\ldots$
10944.bf3 10944.bf \( 2^{6} \cdot 3^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 5460, -1236688]$ \(y^2=x^3+5460x-1236688\) 3.12.0.a.1, 9.36.0.b.1, 24.24.0-3.a.1.1, 72.72.0.?, 114.24.0.?, $\ldots$
10944.bo3 10944.bo \( 2^{6} \cdot 3^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 5460, 1236688]$ \(y^2=x^3+5460x+1236688\) 3.12.0.a.1, 9.36.0.b.1, 24.24.0-3.a.1.2, 72.72.0.?, 152.2.0.?, $\ldots$
10982.a3 10982.a \( 2 \cdot 17^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 2740, 440656]$ \(y^2+xy=x^3+x^2+2740x+440656\) 3.12.0.a.1, 9.36.0.b.1, 51.24.0-3.a.1.1, 152.2.0.?, 153.72.0.?, $\ldots$
14896.x3 14896.x \( 2^{4} \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 7432, 1966292]$ \(y^2=x^3+x^2+7432x+1966292\) 3.12.0.a.1, 9.36.0.b.1, 84.24.0.?, 152.2.0.?, 171.108.4.?, $\ldots$
16758.bg3 16758.bg \( 2 \cdot 3^{2} \cdot 7^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 4180, 827439]$ \(y^2+xy+y=x^3-x^2+4180x+827439\) 3.12.0.a.1, 9.36.0.b.1, 21.24.0-3.a.1.1, 63.72.0-9.b.1.1, 152.2.0.?, $\ldots$
18050.j3 18050.j \( 2 \cdot 5^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 85549, -76693202]$ \(y^2+xy+y=x^3+85549x-76693202\) 3.12.0.a.1, 9.36.0.b.1, 120.24.0.?, 152.2.0.?, 171.108.4.?, $\ldots$
20102.i3 20102.i \( 2 \cdot 19 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 5014, -1088036]$ \(y^2+xy+y=x^3+5014x-1088036\) 3.12.0.a.1, 9.36.0.b.1, 69.24.0-3.a.1.1, 152.2.0.?, 171.108.4.?, $\ldots$
23104.q3 23104.q \( 2^{6} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $3.249240531$ $[0, -1, 0, 219007, 314091553]$ \(y^2=x^3-x^2+219007x+314091553\) 3.12.0.a.1, 9.36.0.b.1, 12.24.0-3.a.1.2, 36.72.0-9.b.1.2, 152.2.0.?, $\ldots$
23104.bj3 23104.bj \( 2^{6} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 219007, -314091553]$ \(y^2=x^3+x^2+219007x-314091553\) 3.12.0.a.1, 6.24.0-3.a.1.1, 9.36.0.b.1, 18.72.0-9.b.1.1, 152.2.0.?, $\ldots$
30400.q3 30400.q \( 2^{6} \cdot 5^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $1.506411865$ $[0, -1, 0, 15167, -5730463]$ \(y^2=x^3-x^2+15167x-5730463\) 3.12.0.a.1, 9.36.0.b.1, 120.24.0.?, 152.2.0.?, 171.108.4.?, $\ldots$
30400.bl3 30400.bl \( 2^{6} \cdot 5^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $6.253851900$ $[0, 1, 0, 15167, 5730463]$ \(y^2=x^3+x^2+15167x+5730463\) 3.12.0.a.1, 9.36.0.b.1, 120.24.0.?, 152.2.0.?, 171.108.4.?, $\ldots$
31958.j3 31958.j \( 2 \cdot 19 \cdot 29^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, 7972, 2185149]$ \(y^2+xy+y=x^3+x^2+7972x+2185149\) 3.12.0.a.1, 9.36.0.b.1, 87.24.0.?, 152.2.0.?, 171.108.4.?, $\ldots$
35378.n3 35378.n \( 2 \cdot 7^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, 167677, 210479681]$ \(y^2+xy=x^3+167677x+210479681\) 3.12.0.a.1, 9.36.0.b.1, 152.2.0.?, 168.24.0.?, 171.108.4.?, $\ldots$
36518.a3 36518.a \( 2 \cdot 19 \cdot 31^{2} \) $1$ $\mathsf{trivial}$ $1.994962261$ $[1, 1, 0, 9110, -2661292]$ \(y^2+xy=x^3+x^2+9110x-2661292\) 3.12.0.a.1, 9.36.0.b.1, 93.24.0.?, 152.2.0.?, 171.108.4.?, $\ldots$
36784.j3 36784.j \( 2^{4} \cdot 11^{2} \cdot 19 \) $2$ $\mathsf{trivial}$ $1.031385091$ $[0, -1, 0, 18352, 7614400]$ \(y^2=x^3-x^2+18352x+7614400\) 3.12.0.a.1, 9.36.0.b.1, 132.24.0.?, 152.2.0.?, 171.108.4.?, $\ldots$
41382.p3 41382.p \( 2 \cdot 3^{2} \cdot 11^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $6.106600201$ $[1, -1, 0, 10323, 3212325]$ \(y^2+xy=x^3-x^2+10323x+3212325\) 3.12.0.a.1, 9.36.0.b.1, 33.24.0-3.a.1.1, 99.72.0.?, 152.2.0.?, $\ldots$
46550.cs3 46550.cs \( 2 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $2.845156900$ $[1, 0, 0, 11612, -3834608]$ \(y^2+xy=x^3+11612x-3834608\) 3.12.0.a.1, 9.36.0.b.1, 105.24.0.?, 152.2.0.?, 171.108.4.?, $\ldots$
51376.i3 51376.i \( 2^{4} \cdot 13^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $1.623811917$ $[0, -1, 0, 25632, -12587264]$ \(y^2=x^3-x^2+25632x-12587264\) 3.12.0.a.1, 9.36.0.b.1, 152.2.0.?, 156.24.0.?, 171.108.4.?, $\ldots$
51984.bn3 51984.bn \( 2^{4} \cdot 3^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 492765, -1060305374]$ \(y^2=x^3+492765x-1060305374\) 3.12.0.a.1, 9.36.0.b.1, 24.24.0-3.a.1.4, 72.72.0.?, 152.2.0.?, $\ldots$
52022.l3 52022.l \( 2 \cdot 19 \cdot 37^{2} \) $2$ $\mathsf{trivial}$ $1.317109903$ $[1, 0, 0, 12977, 4532473]$ \(y^2+xy=x^3+12977x+4532473\) 3.12.0.a.1, 9.36.0.b.1, 111.24.0.?, 152.2.0.?, 171.108.4.?, $\ldots$
57798.o3 57798.o \( 2 \cdot 3^{2} \cdot 13^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 14418, -5310252]$ \(y^2+xy=x^3-x^2+14418x-5310252\) 3.12.0.a.1, 9.36.0.b.1, 39.24.0-3.a.1.1, 117.72.0.?, 152.2.0.?, $\ldots$
59584.z3 59584.z \( 2^{6} \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $3.356655066$ $[0, -1, 0, 29727, 15700609]$ \(y^2=x^3-x^2+29727x+15700609\) 3.12.0.a.1, 9.36.0.b.1, 152.2.0.?, 168.24.0.?, 171.108.4.?, $\ldots$
59584.cf3 59584.cf \( 2^{6} \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $4.319458939$ $[0, 1, 0, 29727, -15700609]$ \(y^2=x^3+x^2+29727x-15700609\) 3.12.0.a.1, 9.36.0.b.1, 152.2.0.?, 168.24.0.?, 171.108.4.?, $\ldots$
63878.b3 63878.b \( 2 \cdot 19 \cdot 41^{2} \) $1$ $\mathsf{trivial}$ $5.545996872$ $[1, 1, 0, 15935, 6172277]$ \(y^2+xy=x^3+x^2+15935x+6172277\) 3.12.0.a.1, 9.36.0.b.1, 123.24.0.?, 152.2.0.?, 171.108.4.?, $\ldots$
68400.cd3 68400.cd \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $4.274529467$ $[0, 0, 0, 34125, 19323250]$ \(y^2=x^3+34125x+19323250\) 3.12.0.a.1, 9.36.0.b.1, 60.24.0-3.a.1.1, 152.2.0.?, 171.108.4.?, $\ldots$
70262.g3 70262.g \( 2 \cdot 19 \cdot 43^{2} \) $1$ $\mathsf{trivial}$ $2.236863271$ $[1, 1, 1, 17527, -7105353]$ \(y^2+xy+y=x^3+x^2+17527x-7105353\) 3.12.0.a.1, 9.36.0.b.1, 129.24.0.?, 152.2.0.?, 171.108.4.?, $\ldots$
83942.c3 83942.c \( 2 \cdot 19 \cdot 47^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 20939, -9286208]$ \(y^2+xy+y=x^3+20939x-9286208\) 3.12.0.a.1, 9.36.0.b.1, 141.24.0.?, 152.2.0.?, 171.108.4.?, $\ldots$
87362.g3 87362.g \( 2 \cdot 11^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $7.706466571$ $[1, 1, 0, 414060, 816877648]$ \(y^2+xy=x^3+x^2+414060x+816877648\) 3.12.0.a.1, 9.36.0.b.1, 152.2.0.?, 171.108.4.?, 264.24.0.?, $\ldots$
87856.n3 87856.n \( 2^{4} \cdot 17^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 43832, -28114316]$ \(y^2=x^3+x^2+43832x-28114316\) 3.12.0.a.1, 9.36.0.b.1, 152.2.0.?, 171.108.4.?, 204.24.0.?, $\ldots$
98838.bh3 98838.bh \( 2 \cdot 3^{2} \cdot 17^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 24655, -11873055]$ \(y^2+xy+y=x^3-x^2+24655x-11873055\) 3.12.0.a.1, 9.36.0.b.1, 51.24.0-3.a.1.1, 152.2.0.?, 153.72.0.?, $\ldots$
106742.k3 106742.k \( 2 \cdot 19 \cdot 53^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, 26627, 13329555]$ \(y^2+xy+y=x^3+x^2+26627x+13329555\) 3.12.0.a.1, 9.36.0.b.1, 152.2.0.?, 159.24.0.?, 171.108.4.?, $\ldots$
114950.m3 114950.m \( 2 \cdot 5^{2} \cdot 11^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 28675, -14871875]$ \(y^2+xy=x^3+x^2+28675x-14871875\) 3.12.0.a.1, 9.36.0.b.1, 152.2.0.?, 165.24.0.?, 171.108.4.?, $\ldots$
122018.f3 122018.f \( 2 \cdot 13^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 578315, -1347844051]$ \(y^2+xy=x^3+x^2+578315x-1347844051\) 3.12.0.a.1, 9.36.0.b.1, 152.2.0.?, 171.108.4.?, 312.24.0.?, $\ldots$
132278.g3 132278.g \( 2 \cdot 19 \cdot 59^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, 32997, -18370351]$ \(y^2+xy=x^3+32997x-18370351\) 3.12.0.a.1, 9.36.0.b.1, 152.2.0.?, 171.108.4.?, 177.24.0.?, $\ldots$
134064.co3 134064.co \( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $2.949233730$ $[0, 0, 0, 66885, -53022998]$ \(y^2=x^3+66885x-53022998\) 3.12.0.a.1, 9.36.0.b.1, 84.24.0.?, 152.2.0.?, 171.108.4.?, $\ldots$
Next   displayed columns for results