Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
38.a3 |
38a1 |
38.a |
38a |
$3$ |
$9$ |
\( 2 \cdot 19 \) |
\( - 2^{9} \cdot 19^{3} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$3$ |
9.72.0.3 |
3Cs.1.1 |
$4104$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$2$ |
$6$ |
$-0.064137$ |
$94196375/3511808$ |
$1.01875$ |
$6.18837$ |
$[1, 0, 1, 9, 90]$ |
\(y^2+xy+y=x^3+9x+90\) |
3.24.0-3.a.1.1, 9.72.0-9.b.1.1, 152.2.0.?, 171.216.4.?, 456.48.1.?, $\ldots$ |
$[]$ |
304.c3 |
304b2 |
304.c |
304b |
$3$ |
$9$ |
\( 2^{4} \cdot 19 \) |
\( - 2^{21} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$4104$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$144$ |
$0.629010$ |
$94196375/3511808$ |
$1.01875$ |
$5.39240$ |
$[0, -1, 0, 152, -5776]$ |
\(y^2=x^3-x^2+152x-5776\) |
3.12.0.a.1, 9.36.0.b.1, 12.24.0-3.a.1.1, 36.72.0-9.b.1.1, 152.2.0.?, $\ldots$ |
$[]$ |
342.e3 |
342a2 |
342.e |
342a |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 19 \) |
\( - 2^{9} \cdot 3^{6} \cdot 19^{3} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.72.0.3 |
3Cs.1.1 |
$4104$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$2$ |
$180$ |
$0.485169$ |
$94196375/3511808$ |
$1.01875$ |
$4.98772$ |
$[1, -1, 1, 85, -2437]$ |
\(y^2+xy+y=x^3-x^2+85x-2437\) |
3.24.0-3.a.1.1, 9.72.0-9.b.1.1, 152.2.0.?, 171.216.4.?, 456.48.1.?, $\ldots$ |
$[]$ |
722.e3 |
722e2 |
722.e |
722e |
$3$ |
$9$ |
\( 2 \cdot 19^{2} \) |
\( - 2^{9} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$4104$ |
$1296$ |
$43$ |
$0.258225187$ |
$1$ |
|
$6$ |
$2160$ |
$1.408083$ |
$94196375/3511808$ |
$1.01875$ |
$6.10410$ |
$[1, 1, 1, 3422, -612177]$ |
\(y^2+xy+y=x^3+x^2+3422x-612177\) |
3.12.0.a.1, 9.36.0.b.1, 24.24.0-3.a.1.3, 57.24.0-3.a.1.1, 72.72.0.?, $\ldots$ |
$[(359, 6679)]$ |
950.d3 |
950e2 |
950.d |
950e |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 19 \) |
\( - 2^{9} \cdot 5^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$20520$ |
$1296$ |
$43$ |
$0.062920129$ |
$1$ |
|
$12$ |
$864$ |
$0.740582$ |
$94196375/3511808$ |
$1.01875$ |
$4.69154$ |
$[1, 1, 1, 237, 11281]$ |
\(y^2+xy+y=x^3+x^2+237x+11281\) |
3.12.0.a.1, 9.36.0.b.1, 15.24.0-3.a.1.1, 45.72.0-9.b.1.1, 152.2.0.?, $\ldots$ |
$[(95, 902)]$ |
1216.e3 |
1216b2 |
1216.e |
1216b |
$3$ |
$9$ |
\( 2^{6} \cdot 19 \) |
\( - 2^{27} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$4104$ |
$1296$ |
$43$ |
$0.834776094$ |
$1$ |
|
$4$ |
$1152$ |
$0.975584$ |
$94196375/3511808$ |
$1.01875$ |
$4.92549$ |
$[0, -1, 0, 607, 45601]$ |
\(y^2=x^3-x^2+607x+45601\) |
3.12.0.a.1, 9.36.0.b.1, 24.24.0-3.a.1.1, 72.72.0.?, 114.24.0.?, $\ldots$ |
$[(57, 512)]$ |
1216.m3 |
1216o2 |
1216.m |
1216o |
$3$ |
$9$ |
\( 2^{6} \cdot 19 \) |
\( - 2^{27} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$4104$ |
$1296$ |
$43$ |
$0.566135023$ |
$1$ |
|
$4$ |
$1152$ |
$0.975584$ |
$94196375/3511808$ |
$1.01875$ |
$4.92549$ |
$[0, 1, 0, 607, -45601]$ |
\(y^2=x^3+x^2+607x-45601\) |
3.12.0.a.1, 9.36.0.b.1, 24.24.0-3.a.1.2, 72.72.0.?, 152.2.0.?, $\ldots$ |
$[(455, 9728)]$ |
1862.b3 |
1862b2 |
1862.b |
1862b |
$3$ |
$9$ |
\( 2 \cdot 7^{2} \cdot 19 \) |
\( - 2^{9} \cdot 7^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$28728$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$2268$ |
$0.908818$ |
$94196375/3511808$ |
$1.01875$ |
$4.54035$ |
$[1, 1, 0, 465, -30491]$ |
\(y^2+xy=x^3+x^2+465x-30491\) |
3.12.0.a.1, 9.36.0.b.1, 21.24.0-3.a.1.1, 63.72.0-9.b.1.1, 152.2.0.?, $\ldots$ |
$[]$ |
2736.n3 |
2736m2 |
2736.n |
2736m |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 19 \) |
\( - 2^{21} \cdot 3^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$4104$ |
$1296$ |
$43$ |
$1.513162762$ |
$1$ |
|
$4$ |
$4320$ |
$1.178316$ |
$94196375/3511808$ |
$1.01875$ |
$4.72820$ |
$[0, 0, 0, 1365, 154586]$ |
\(y^2=x^3+1365x+154586\) |
3.12.0.a.1, 9.36.0.b.1, 12.24.0-3.a.1.1, 36.72.0-9.b.1.1, 152.2.0.?, $\ldots$ |
$[(-43, 128)]$ |
4598.p3 |
4598n2 |
4598.p |
4598n |
$3$ |
$9$ |
\( 2 \cdot 11^{2} \cdot 19 \) |
\( - 2^{9} \cdot 11^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$45144$ |
$1296$ |
$43$ |
$0.946933650$ |
$1$ |
|
$4$ |
$6480$ |
$1.134811$ |
$94196375/3511808$ |
$1.01875$ |
$4.37524$ |
$[1, 0, 0, 1147, -118975]$ |
\(y^2+xy=x^3+1147x-118975\) |
3.12.0.a.1, 9.36.0.b.1, 33.24.0-3.a.1.1, 99.72.0.?, 152.2.0.?, $\ldots$ |
$[(98, 919)]$ |
5776.m3 |
5776l2 |
5776.m |
5776l |
$3$ |
$9$ |
\( 2^{4} \cdot 19^{2} \) |
\( - 2^{21} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$4104$ |
$1296$ |
$43$ |
$2.757748041$ |
$1$ |
|
$0$ |
$51840$ |
$2.101231$ |
$94196375/3511808$ |
$1.01875$ |
$5.59895$ |
$[0, 1, 0, 54752, 39288820]$ |
\(y^2=x^3+x^2+54752x+39288820\) |
3.12.0.a.1, 9.36.0.b.1, 24.24.0-3.a.1.4, 72.72.0.?, 152.2.0.?, $\ldots$ |
$[(2410/3, 231040/3)]$ |
6422.h3 |
6422f2 |
6422.h |
6422f |
$3$ |
$9$ |
\( 2 \cdot 13^{2} \cdot 19 \) |
\( - 2^{9} \cdot 13^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$53352$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$12312$ |
$1.218338$ |
$94196375/3511808$ |
$1.01875$ |
$4.32284$ |
$[1, 0, 0, 1602, 196676]$ |
\(y^2+xy=x^3+1602x+196676\) |
3.12.0.a.1, 9.36.0.b.1, 39.24.0-3.a.1.1, 117.72.0.?, 152.2.0.?, $\ldots$ |
$[]$ |
6498.f3 |
6498j2 |
6498.f |
6498j |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 19^{2} \) |
\( - 2^{9} \cdot 3^{6} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$4104$ |
$1296$ |
$43$ |
$2.960817249$ |
$1$ |
|
$0$ |
$64800$ |
$1.957390$ |
$94196375/3511808$ |
$1.01875$ |
$5.32722$ |
$[1, -1, 0, 30798, 16559572]$ |
\(y^2+xy=x^3-x^2+30798x+16559572\) |
3.12.0.a.1, 9.36.0.b.1, 24.24.0-3.a.1.3, 57.24.0-3.a.1.1, 72.72.0.?, $\ldots$ |
$[(2547/2, 134633/2)]$ |
7600.n3 |
7600l2 |
7600.n |
7600l |
$3$ |
$9$ |
\( 2^{4} \cdot 5^{2} \cdot 19 \) |
\( - 2^{21} \cdot 5^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$20520$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$20736$ |
$1.433729$ |
$94196375/3511808$ |
$1.01875$ |
$4.53061$ |
$[0, 1, 0, 3792, -714412]$ |
\(y^2=x^3+x^2+3792x-714412\) |
3.12.0.a.1, 9.36.0.b.1, 60.24.0-3.a.1.1, 152.2.0.?, 171.108.4.?, $\ldots$ |
$[]$ |
8550.m3 |
8550i2 |
8550.m |
8550i |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{9} \cdot 3^{6} \cdot 5^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$20520$ |
$1296$ |
$43$ |
$1.882012280$ |
$1$ |
|
$2$ |
$25920$ |
$1.289888$ |
$94196375/3511808$ |
$1.01875$ |
$4.28102$ |
$[1, -1, 0, 2133, -302459]$ |
\(y^2+xy=x^3-x^2+2133x-302459\) |
3.12.0.a.1, 9.36.0.b.1, 15.24.0-3.a.1.1, 45.72.0-9.b.1.1, 152.2.0.?, $\ldots$ |
$[(189, 2518)]$ |
10944.bf3 |
10944l2 |
10944.bf |
10944l |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{2} \cdot 19 \) |
\( - 2^{27} \cdot 3^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$4104$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$34560$ |
$1.524891$ |
$94196375/3511808$ |
$1.01875$ |
$4.47060$ |
$[0, 0, 0, 5460, -1236688]$ |
\(y^2=x^3+5460x-1236688\) |
3.12.0.a.1, 9.36.0.b.1, 24.24.0-3.a.1.1, 72.72.0.?, 114.24.0.?, $\ldots$ |
$[]$ |
10944.bo3 |
10944cf2 |
10944.bo |
10944cf |
$3$ |
$9$ |
\( 2^{6} \cdot 3^{2} \cdot 19 \) |
\( - 2^{27} \cdot 3^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$4104$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$34560$ |
$1.524891$ |
$94196375/3511808$ |
$1.01875$ |
$4.47060$ |
$[0, 0, 0, 5460, 1236688]$ |
\(y^2=x^3+5460x+1236688\) |
3.12.0.a.1, 9.36.0.b.1, 24.24.0-3.a.1.2, 72.72.0.?, 152.2.0.?, $\ldots$ |
$[]$ |
10982.a3 |
10982b2 |
10982.a |
10982b |
$3$ |
$9$ |
\( 2 \cdot 17^{2} \cdot 19 \) |
\( - 2^{9} \cdot 17^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$69768$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$30240$ |
$1.352470$ |
$94196375/3511808$ |
$1.01875$ |
$4.24655$ |
$[1, 1, 0, 2740, 440656]$ |
\(y^2+xy=x^3+x^2+2740x+440656\) |
3.12.0.a.1, 9.36.0.b.1, 51.24.0-3.a.1.1, 152.2.0.?, 153.72.0.?, $\ldots$ |
$[]$ |
14896.x3 |
14896bd2 |
14896.x |
14896bd |
$3$ |
$9$ |
\( 2^{4} \cdot 7^{2} \cdot 19 \) |
\( - 2^{21} \cdot 7^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$28728$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$54432$ |
$1.601965$ |
$94196375/3511808$ |
$1.01875$ |
$4.42342$ |
$[0, 1, 0, 7432, 1966292]$ |
\(y^2=x^3+x^2+7432x+1966292\) |
3.12.0.a.1, 9.36.0.b.1, 84.24.0.?, 152.2.0.?, 171.108.4.?, $\ldots$ |
$[]$ |
16758.bg3 |
16758bc2 |
16758.bg |
16758bc |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{9} \cdot 3^{6} \cdot 7^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$28728$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$68040$ |
$1.458124$ |
$94196375/3511808$ |
$1.01875$ |
$4.19239$ |
$[1, -1, 1, 4180, 827439]$ |
\(y^2+xy+y=x^3-x^2+4180x+827439\) |
3.12.0.a.1, 9.36.0.b.1, 21.24.0-3.a.1.1, 63.72.0-9.b.1.1, 152.2.0.?, $\ldots$ |
$[]$ |
18050.j3 |
18050e2 |
18050.j |
18050e |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 19^{2} \) |
\( - 2^{9} \cdot 5^{6} \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$20520$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$311040$ |
$2.212803$ |
$94196375/3511808$ |
$1.01875$ |
$5.08463$ |
$[1, 0, 1, 85549, -76693202]$ |
\(y^2+xy+y=x^3+85549x-76693202\) |
3.12.0.a.1, 9.36.0.b.1, 120.24.0.?, 152.2.0.?, 171.108.4.?, $\ldots$ |
$[]$ |
20102.i3 |
20102b2 |
20102.i |
20102b |
$3$ |
$9$ |
\( 2 \cdot 19 \cdot 23^{2} \) |
\( - 2^{9} \cdot 19^{3} \cdot 23^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$94392$ |
$1296$ |
$43$ |
$1$ |
$9$ |
$3$ |
$0$ |
$74844$ |
$1.503611$ |
$94196375/3511808$ |
$1.01875$ |
$4.17050$ |
$[1, 0, 1, 5014, -1088036]$ |
\(y^2+xy+y=x^3+5014x-1088036\) |
3.12.0.a.1, 9.36.0.b.1, 69.24.0-3.a.1.1, 152.2.0.?, 171.108.4.?, $\ldots$ |
$[]$ |
23104.q3 |
23104bt2 |
23104.q |
23104bt |
$3$ |
$9$ |
\( 2^{6} \cdot 19^{2} \) |
\( - 2^{27} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$4104$ |
$1296$ |
$43$ |
$3.249240531$ |
$1$ |
|
$2$ |
$414720$ |
$2.447803$ |
$94196375/3511808$ |
$1.01875$ |
$5.24037$ |
$[0, -1, 0, 219007, 314091553]$ |
\(y^2=x^3-x^2+219007x+314091553\) |
3.12.0.a.1, 9.36.0.b.1, 12.24.0-3.a.1.2, 36.72.0-9.b.1.2, 152.2.0.?, $\ldots$ |
$[(3984, 253783)]$ |
23104.bj3 |
23104l2 |
23104.bj |
23104l |
$3$ |
$9$ |
\( 2^{6} \cdot 19^{2} \) |
\( - 2^{27} \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$4104$ |
$1296$ |
$43$ |
$1$ |
$9$ |
$3$ |
$0$ |
$414720$ |
$2.447803$ |
$94196375/3511808$ |
$1.01875$ |
$5.24037$ |
$[0, 1, 0, 219007, -314091553]$ |
\(y^2=x^3+x^2+219007x-314091553\) |
3.12.0.a.1, 6.24.0-3.a.1.1, 9.36.0.b.1, 18.72.0-9.b.1.1, 152.2.0.?, $\ldots$ |
$[]$ |
30400.q3 |
30400br2 |
30400.q |
30400br |
$3$ |
$9$ |
\( 2^{6} \cdot 5^{2} \cdot 19 \) |
\( - 2^{27} \cdot 5^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$20520$ |
$1296$ |
$43$ |
$1.506411865$ |
$1$ |
|
$2$ |
$165888$ |
$1.780304$ |
$94196375/3511808$ |
$1.01875$ |
$4.32505$ |
$[0, -1, 0, 15167, -5730463]$ |
\(y^2=x^3-x^2+15167x-5730463\) |
3.12.0.a.1, 9.36.0.b.1, 120.24.0.?, 152.2.0.?, 171.108.4.?, $\ldots$ |
$[(187, 1900)]$ |
30400.bl3 |
30400d2 |
30400.bl |
30400d |
$3$ |
$9$ |
\( 2^{6} \cdot 5^{2} \cdot 19 \) |
\( - 2^{27} \cdot 5^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$20520$ |
$1296$ |
$43$ |
$6.253851900$ |
$1$ |
|
$0$ |
$165888$ |
$1.780304$ |
$94196375/3511808$ |
$1.01875$ |
$4.32505$ |
$[0, 1, 0, 15167, 5730463]$ |
\(y^2=x^3+x^2+15167x+5730463\) |
3.12.0.a.1, 9.36.0.b.1, 120.24.0.?, 152.2.0.?, 171.108.4.?, $\ldots$ |
$[(-1358/3, 4625/3)]$ |
31958.j3 |
31958h2 |
31958.j |
31958h |
$3$ |
$9$ |
\( 2 \cdot 19 \cdot 29^{2} \) |
\( - 2^{9} \cdot 19^{3} \cdot 29^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$119016$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$137592$ |
$1.619511$ |
$94196375/3511808$ |
$1.01875$ |
$4.11818$ |
$[1, 1, 1, 7972, 2185149]$ |
\(y^2+xy+y=x^3+x^2+7972x+2185149\) |
3.12.0.a.1, 9.36.0.b.1, 87.24.0.?, 152.2.0.?, 171.108.4.?, $\ldots$ |
$[]$ |
35378.n3 |
35378o2 |
35378.n |
35378o |
$3$ |
$9$ |
\( 2 \cdot 7^{2} \cdot 19^{2} \) |
\( - 2^{9} \cdot 7^{6} \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$28728$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$816480$ |
$2.381039$ |
$94196375/3511808$ |
$1.01875$ |
$4.95069$ |
$[1, 0, 0, 167677, 210479681]$ |
\(y^2+xy=x^3+167677x+210479681\) |
3.12.0.a.1, 9.36.0.b.1, 152.2.0.?, 168.24.0.?, 171.108.4.?, $\ldots$ |
$[]$ |
36518.a3 |
36518a2 |
36518.a |
36518a |
$3$ |
$9$ |
\( 2 \cdot 19 \cdot 31^{2} \) |
\( - 2^{9} \cdot 19^{3} \cdot 31^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$127224$ |
$1296$ |
$43$ |
$1.994962261$ |
$1$ |
|
$4$ |
$181440$ |
$1.652857$ |
$94196375/3511808$ |
$1.01875$ |
$4.10398$ |
$[1, 1, 0, 9110, -2661292]$ |
\(y^2+xy=x^3+x^2+9110x-2661292\) |
3.12.0.a.1, 9.36.0.b.1, 93.24.0.?, 152.2.0.?, 171.108.4.?, $\ldots$ |
$[(121, 420)]$ |
36784.j3 |
36784bh2 |
36784.j |
36784bh |
$3$ |
$9$ |
\( 2^{4} \cdot 11^{2} \cdot 19 \) |
\( - 2^{21} \cdot 11^{6} \cdot 19^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$45144$ |
$1296$ |
$43$ |
$1.031385091$ |
$1$ |
|
$12$ |
$155520$ |
$1.827959$ |
$94196375/3511808$ |
$1.01875$ |
$4.30102$ |
$[0, -1, 0, 18352, 7614400]$ |
\(y^2=x^3-x^2+18352x+7614400\) |
3.12.0.a.1, 9.36.0.b.1, 132.24.0.?, 152.2.0.?, 171.108.4.?, $\ldots$ |
$[(-72, 2432), (4216/3, 294272/3)]$ |
41382.p3 |
41382m2 |
41382.p |
41382m |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 11^{2} \cdot 19 \) |
\( - 2^{9} \cdot 3^{6} \cdot 11^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$45144$ |
$1296$ |
$43$ |
$6.106600201$ |
$1$ |
|
$0$ |
$194400$ |
$1.684116$ |
$94196375/3511808$ |
$1.01875$ |
$4.09100$ |
$[1, -1, 0, 10323, 3212325]$ |
\(y^2+xy=x^3-x^2+10323x+3212325\) |
3.12.0.a.1, 9.36.0.b.1, 33.24.0-3.a.1.1, 99.72.0.?, 152.2.0.?, $\ldots$ |
$[(2677/4, 192965/4)]$ |
46550.cs3 |
46550ca2 |
46550.cs |
46550ca |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{9} \cdot 5^{6} \cdot 7^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$143640$ |
$1296$ |
$43$ |
$2.845156900$ |
$1$ |
|
$4$ |
$326592$ |
$1.713537$ |
$94196375/3511808$ |
$1.01875$ |
$4.07905$ |
$[1, 0, 0, 11612, -3834608]$ |
\(y^2+xy=x^3+11612x-3834608\) |
3.12.0.a.1, 9.36.0.b.1, 105.24.0.?, 152.2.0.?, 171.108.4.?, $\ldots$ |
$[(132, -16)]$ |
51376.i3 |
51376v2 |
51376.i |
51376v |
$3$ |
$9$ |
\( 2^{4} \cdot 13^{2} \cdot 19 \) |
\( - 2^{21} \cdot 13^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$53352$ |
$1296$ |
$43$ |
$1.623811917$ |
$1$ |
|
$2$ |
$295488$ |
$1.911486$ |
$94196375/3511808$ |
$1.01875$ |
$4.26095$ |
$[0, -1, 0, 25632, -12587264]$ |
\(y^2=x^3-x^2+25632x-12587264\) |
3.12.0.a.1, 9.36.0.b.1, 152.2.0.?, 156.24.0.?, 171.108.4.?, $\ldots$ |
$[(528, 12160)]$ |
51984.bn3 |
51984ci2 |
51984.bn |
51984ci |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 19^{2} \) |
\( - 2^{21} \cdot 3^{6} \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$4104$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$1555200$ |
$2.650536$ |
$94196375/3511808$ |
$1.01875$ |
$5.07306$ |
$[0, 0, 0, 492765, -1060305374]$ |
\(y^2=x^3+492765x-1060305374\) |
3.12.0.a.1, 9.36.0.b.1, 24.24.0-3.a.1.4, 72.72.0.?, 152.2.0.?, $\ldots$ |
$[]$ |
52022.l3 |
52022i2 |
52022.l |
52022i |
$3$ |
$9$ |
\( 2 \cdot 19 \cdot 37^{2} \) |
\( - 2^{9} \cdot 19^{3} \cdot 37^{6} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$151848$ |
$1296$ |
$43$ |
$1.317109903$ |
$1$ |
|
$10$ |
$311040$ |
$1.741322$ |
$94196375/3511808$ |
$1.01875$ |
$4.06801$ |
$[1, 0, 0, 12977, 4532473]$ |
\(y^2+xy=x^3+12977x+4532473\) |
3.12.0.a.1, 9.36.0.b.1, 111.24.0.?, 152.2.0.?, 171.108.4.?, $\ldots$ |
$[(114, 2681), (-108, 1423)]$ |
57798.o3 |
57798h2 |
57798.o |
57798h |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 13^{2} \cdot 19 \) |
\( - 2^{9} \cdot 3^{6} \cdot 13^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$53352$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$369360$ |
$1.767645$ |
$94196375/3511808$ |
$1.01875$ |
$4.05775$ |
$[1, -1, 0, 14418, -5310252]$ |
\(y^2+xy=x^3-x^2+14418x-5310252\) |
3.12.0.a.1, 9.36.0.b.1, 39.24.0-3.a.1.1, 117.72.0.?, 152.2.0.?, $\ldots$ |
$[]$ |
59584.z3 |
59584cl2 |
59584.z |
59584cl |
$3$ |
$9$ |
\( 2^{6} \cdot 7^{2} \cdot 19 \) |
\( - 2^{27} \cdot 7^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$28728$ |
$1296$ |
$43$ |
$3.356655066$ |
$1$ |
|
$2$ |
$435456$ |
$1.948540$ |
$94196375/3511808$ |
$1.01875$ |
$4.24395$ |
$[0, -1, 0, 29727, 15700609]$ |
\(y^2=x^3-x^2+29727x+15700609\) |
3.12.0.a.1, 9.36.0.b.1, 152.2.0.?, 168.24.0.?, 171.108.4.?, $\ldots$ |
$[(909, 28160)]$ |
59584.cf3 |
59584bg2 |
59584.cf |
59584bg |
$3$ |
$9$ |
\( 2^{6} \cdot 7^{2} \cdot 19 \) |
\( - 2^{27} \cdot 7^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$28728$ |
$1296$ |
$43$ |
$4.319458939$ |
$1$ |
|
$0$ |
$435456$ |
$1.948540$ |
$94196375/3511808$ |
$1.01875$ |
$4.24395$ |
$[0, 1, 0, 29727, -15700609]$ |
\(y^2=x^3+x^2+29727x-15700609\) |
3.12.0.a.1, 9.36.0.b.1, 152.2.0.?, 168.24.0.?, 171.108.4.?, $\ldots$ |
$[(18955/3, 2616832/3)]$ |
63878.b3 |
63878c2 |
63878.b |
63878c |
$3$ |
$9$ |
\( 2 \cdot 19 \cdot 41^{2} \) |
\( - 2^{9} \cdot 19^{3} \cdot 41^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$168264$ |
$1296$ |
$43$ |
$5.545996872$ |
$1$ |
|
$0$ |
$423360$ |
$1.792650$ |
$94196375/3511808$ |
$1.01875$ |
$4.04819$ |
$[1, 1, 0, 15935, 6172277]$ |
\(y^2+xy=x^3+x^2+15935x+6172277\) |
3.12.0.a.1, 9.36.0.b.1, 123.24.0.?, 152.2.0.?, 171.108.4.?, $\ldots$ |
$[(67/6, 537719/6)]$ |
68400.cd3 |
68400ee2 |
68400.cd |
68400ee |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 19 \) |
\( - 2^{21} \cdot 3^{6} \cdot 5^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$20520$ |
$1296$ |
$43$ |
$4.274529467$ |
$1$ |
|
$2$ |
$622080$ |
$1.983036$ |
$94196375/3511808$ |
$1.01875$ |
$4.22853$ |
$[0, 0, 0, 34125, 19323250]$ |
\(y^2=x^3+34125x+19323250\) |
3.12.0.a.1, 9.36.0.b.1, 60.24.0-3.a.1.1, 152.2.0.?, 171.108.4.?, $\ldots$ |
$[(495, 12550)]$ |
70262.g3 |
70262f2 |
70262.g |
70262f |
$3$ |
$9$ |
\( 2 \cdot 19 \cdot 43^{2} \) |
\( - 2^{9} \cdot 19^{3} \cdot 43^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$176472$ |
$1296$ |
$43$ |
$2.236863271$ |
$1$ |
|
$2$ |
$471744$ |
$1.816463$ |
$94196375/3511808$ |
$1.01875$ |
$4.03924$ |
$[1, 1, 1, 17527, -7105353]$ |
\(y^2+xy+y=x^3+x^2+17527x-7105353\) |
3.12.0.a.1, 9.36.0.b.1, 129.24.0.?, 152.2.0.?, 171.108.4.?, $\ldots$ |
$[(1759, 73080)]$ |
83942.c3 |
83942a2 |
83942.c |
83942a |
$3$ |
$9$ |
\( 2 \cdot 19 \cdot 47^{2} \) |
\( - 2^{9} \cdot 19^{3} \cdot 47^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$192888$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$635904$ |
$1.860937$ |
$94196375/3511808$ |
$1.01875$ |
$4.02294$ |
$[1, 0, 1, 20939, -9286208]$ |
\(y^2+xy+y=x^3+20939x-9286208\) |
3.12.0.a.1, 9.36.0.b.1, 141.24.0.?, 152.2.0.?, 171.108.4.?, $\ldots$ |
$[]$ |
87362.g3 |
87362q2 |
87362.g |
87362q |
$3$ |
$9$ |
\( 2 \cdot 11^{2} \cdot 19^{2} \) |
\( - 2^{9} \cdot 11^{6} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$45144$ |
$1296$ |
$43$ |
$7.706466571$ |
$1$ |
|
$0$ |
$2332800$ |
$2.607029$ |
$94196375/3511808$ |
$1.01875$ |
$4.79571$ |
$[1, 1, 0, 414060, 816877648]$ |
\(y^2+xy=x^3+x^2+414060x+816877648\) |
3.12.0.a.1, 9.36.0.b.1, 152.2.0.?, 171.108.4.?, 264.24.0.?, $\ldots$ |
$[(3693/4, 1938899/4)]$ |
87856.n3 |
87856g2 |
87856.n |
87856g |
$3$ |
$9$ |
\( 2^{4} \cdot 17^{2} \cdot 19 \) |
\( - 2^{21} \cdot 17^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$69768$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$725760$ |
$2.045616$ |
$94196375/3511808$ |
$1.01875$ |
$4.20152$ |
$[0, 1, 0, 43832, -28114316]$ |
\(y^2=x^3+x^2+43832x-28114316\) |
3.12.0.a.1, 9.36.0.b.1, 152.2.0.?, 171.108.4.?, 204.24.0.?, $\ldots$ |
$[]$ |
98838.bh3 |
98838bl2 |
98838.bh |
98838bl |
$3$ |
$9$ |
\( 2 \cdot 3^{2} \cdot 17^{2} \cdot 19 \) |
\( - 2^{9} \cdot 3^{6} \cdot 17^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$69768$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$907200$ |
$1.901775$ |
$94196375/3511808$ |
$1.01875$ |
$4.00841$ |
$[1, -1, 1, 24655, -11873055]$ |
\(y^2+xy+y=x^3-x^2+24655x-11873055\) |
3.12.0.a.1, 9.36.0.b.1, 51.24.0-3.a.1.1, 152.2.0.?, 153.72.0.?, $\ldots$ |
$[]$ |
106742.k3 |
106742g2 |
106742.k |
106742g |
$3$ |
$9$ |
\( 2 \cdot 19 \cdot 53^{2} \) |
\( - 2^{9} \cdot 19^{3} \cdot 53^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$217512$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$906984$ |
$1.921009$ |
$94196375/3511808$ |
$1.01875$ |
$4.00171$ |
$[1, 1, 1, 26627, 13329555]$ |
\(y^2+xy+y=x^3+x^2+26627x+13329555\) |
3.12.0.a.1, 9.36.0.b.1, 152.2.0.?, 159.24.0.?, 171.108.4.?, $\ldots$ |
$[]$ |
114950.m3 |
114950m2 |
114950.m |
114950m |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 11^{2} \cdot 19 \) |
\( - 2^{9} \cdot 5^{6} \cdot 11^{6} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$225720$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$933120$ |
$1.939529$ |
$94196375/3511808$ |
$1.01875$ |
$3.99534$ |
$[1, 1, 0, 28675, -14871875]$ |
\(y^2+xy=x^3+x^2+28675x-14871875\) |
3.12.0.a.1, 9.36.0.b.1, 152.2.0.?, 165.24.0.?, 171.108.4.?, $\ldots$ |
$[]$ |
122018.f3 |
122018j2 |
122018.f |
122018j |
$3$ |
$9$ |
\( 2 \cdot 13^{2} \cdot 19^{2} \) |
\( - 2^{9} \cdot 13^{6} \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$53352$ |
$1296$ |
$43$ |
$1$ |
$9$ |
$3$ |
$0$ |
$4432320$ |
$2.690559$ |
$94196375/3511808$ |
$1.01875$ |
$4.74449$ |
$[1, 1, 0, 578315, -1347844051]$ |
\(y^2+xy=x^3+x^2+578315x-1347844051\) |
3.12.0.a.1, 9.36.0.b.1, 152.2.0.?, 171.108.4.?, 312.24.0.?, $\ldots$ |
$[]$ |
132278.g3 |
132278b2 |
132278.g |
132278b |
$3$ |
$9$ |
\( 2 \cdot 19 \cdot 59^{2} \) |
\( - 2^{9} \cdot 19^{3} \cdot 59^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$242136$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$1224612$ |
$1.974632$ |
$94196375/3511808$ |
$1.01875$ |
$3.98349$ |
$[1, 0, 0, 32997, -18370351]$ |
\(y^2+xy=x^3+32997x-18370351\) |
3.12.0.a.1, 9.36.0.b.1, 152.2.0.?, 171.108.4.?, 177.24.0.?, $\ldots$ |
$[]$ |
134064.co3 |
134064bg2 |
134064.co |
134064bg |
$3$ |
$9$ |
\( 2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 19 \) |
\( - 2^{21} \cdot 3^{6} \cdot 7^{6} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$28728$ |
$1296$ |
$43$ |
$2.949233730$ |
$1$ |
|
$2$ |
$1632960$ |
$2.151272$ |
$94196375/3511808$ |
$1.01875$ |
$4.15851$ |
$[0, 0, 0, 66885, -53022998]$ |
\(y^2=x^3+66885x-53022998\) |
3.12.0.a.1, 9.36.0.b.1, 84.24.0.?, 152.2.0.?, 171.108.4.?, $\ldots$ |
$[(2349, 114304)]$ |