Show commands:
Magma
magma: G := TransitiveGroup(10, 34);
Group action invariants
Degree $n$: | $10$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $34$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_2^4 : A_5$ | ||
CHM label: | $[2^{4}]A(5)$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (2,4,10)(5,7,9), (1,3,5,7,9)(2,4,6,8,10), (2,7)(5,10) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $60$: $A_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 5: $A_5$
Low degree siblings
16T1081, 20T172, 20T177, 30T214, 30T217, 40T888, 40T889, 40T932, 40T942, 40T944, 40T945Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{10}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{4},1^{2}$ | $5$ | $2$ | $4$ | $( 1, 6)( 2, 7)( 3, 8)( 5,10)$ |
2B | $2^{2},1^{6}$ | $10$ | $2$ | $2$ | $( 1, 6)( 5,10)$ |
2C | $2^{4},1^{2}$ | $60$ | $2$ | $4$ | $( 1, 7)( 2, 6)( 3,10)( 5, 8)$ |
3A | $3^{2},1^{4}$ | $80$ | $3$ | $4$ | $( 2, 5, 8)( 3, 7,10)$ |
4A | $4^{2},1^{2}$ | $60$ | $4$ | $6$ | $( 1, 2, 6, 7)( 3,10, 8, 5)$ |
4B | $4,2^{3}$ | $120$ | $4$ | $6$ | $( 1,10, 6, 5)( 2, 4)( 3, 8)( 7, 9)$ |
5A1 | $5^{2}$ | $192$ | $5$ | $8$ | $( 1,10, 4, 2, 8)( 3, 6, 5, 9, 7)$ |
5A2 | $5^{2}$ | $192$ | $5$ | $8$ | $( 1, 4, 8,10, 2)( 3, 5, 7, 6, 9)$ |
6A | $3^{2},2^{2}$ | $80$ | $6$ | $6$ | $( 1, 6)( 2, 3, 5)( 4, 9)( 7, 8,10)$ |
6B1 | $6,2,1^{2}$ | $80$ | $6$ | $6$ | $( 1, 6)( 2,10, 8, 7, 5, 3)$ |
6B-1 | $6,2,1^{2}$ | $80$ | $6$ | $6$ | $( 1, 6)( 2, 3, 5, 7, 8,10)$ |
Malle's constant $a(G)$: $1/2$
magma: ConjugacyClasses(G);
Group invariants
Order: | $960=2^{6} \cdot 3 \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 960.11358 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 3A | 4A | 4B | 5A1 | 5A2 | 6A | 6B1 | 6B-1 | ||
Size | 1 | 5 | 10 | 60 | 80 | 60 | 120 | 192 | 192 | 80 | 80 | 80 | |
2 P | 1A | 1A | 1A | 1A | 3A | 2A | 2B | 5A2 | 5A1 | 3A | 3A | 3A | |
3 P | 1A | 2A | 2B | 2C | 1A | 4A | 4B | 5A2 | 5A1 | 2B | 2A | 2A | |
5 P | 1A | 2A | 2B | 2C | 3A | 4A | 4B | 1A | 1A | 6A | 6B-1 | 6B1 | |
Type | |||||||||||||
960.11358.1a | R | ||||||||||||
960.11358.3a1 | R | ||||||||||||
960.11358.3a2 | R | ||||||||||||
960.11358.4a | R | ||||||||||||
960.11358.5a | R | ||||||||||||
960.11358.5b | R | ||||||||||||
960.11358.5c1 | C | ||||||||||||
960.11358.5c2 | C | ||||||||||||
960.11358.10a | R | ||||||||||||
960.11358.10b | R | ||||||||||||
960.11358.15a | R | ||||||||||||
960.11358.20a | R |
magma: CharacterTable(G);