Properties

Label 10T8
10T8 1 3 1->3 2 4 2->4 7 2->7 5 3->5 6 4->6 5->7 10 5->10 8 6->8 9 7->9 8->10 9->1 10->2
Degree 1010
Order 8080
Cyclic no
Abelian no
Solvable yes
Primitive no
pp-group no
Group: C24:C5C_2^4 : C_5

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(10, 8);
 

Group invariants

Abstract group:  C24:C5C_2^4 : C_5
Copy content magma:IdentifyGroup(G);
 
Order:  80=24580=2^{4} \cdot 5
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree nn:  1010
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number tt:  88
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
CHM label:   [24]5[2^{4}]5
Parity:  11
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
#Aut(F/K)\card{\Aut(F/K)}:  22
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,3,5,7,9)(2,4,6,8,10)(1,3,5,7,9)(2,4,6,8,10), (2,7)(5,10)(2,7)(5,10)
Copy content magma:Generators(G);
 

Low degree resolvents

#(G/N)\card{(G/N)}Galois groups for stem field(s)
55C5C_5

Resolvents shown for degrees 47\leq 47

Subfields

Degree 2: None

Degree 5: C5C_5

Low degree siblings

10T8 x 2, 16T178, 20T17 x 6, 20T23, 40T57 x 3

Siblings are shown with degree 47\leq 47

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A 1101^{10} 11 11 00 ()()
2A 22,162^{2},1^{6} 55 22 22 (3,8)(4,9)(3,8)(4,9)
2B 24,122^{4},1^{2} 55 22 44 (1,6)(3,8)(4,9)(5,10)( 1, 6)( 3, 8)( 4, 9)( 5,10)
2C 22,162^{2},1^{6} 55 22 22 (2,7)(4,9)(2,7)(4,9)
5A1 525^{2} 1616 55 88 (1,7,3,9,5)(2,8,4,10,6)( 1, 7, 3, 9, 5)( 2, 8, 4,10, 6)
5A-1 525^{2} 1616 55 88 (1,5,9,3,7)(2,6,10,4,8)( 1, 5, 9, 3, 7)( 2, 6,10, 4, 8)
5A2 525^{2} 1616 55 88 (1,3,5,7,9)(2,4,6,8,10)( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10)
5A-2 525^{2} 1616 55 88 (1,9,7,5,3)(2,10,8,6,4)( 1, 9, 7, 5, 3)( 2,10, 8, 6, 4)

Malle's constant a(G)a(G):     1/21/2

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 2B 2C 5A1 5A-1 5A2 5A-2
Size 1 5 5 5 16 16 16 16
2 P 1A 1A 1A 1A 5A2 5A-2 5A-1 5A1
5 P 1A 2A 2B 2C 1A 1A 1A 1A
Type
80.49.1a R 1 1 1 1 1 1 1 1
80.49.1b1 C 1 1 1 1 ζ52 ζ52 ζ5 ζ51
80.49.1b2 C 1 1 1 1 ζ52 ζ52 ζ51 ζ5
80.49.1b3 C 1 1 1 1 ζ51 ζ5 ζ52 ζ52
80.49.1b4 C 1 1 1 1 ζ5 ζ51 ζ52 ζ52
80.49.5a R 5 3 1 1 0 0 0 0
80.49.5b R 5 1 3 1 0 0 0 0
80.49.5c R 5 1 1 3 0 0 0 0

Copy content magma:CharacterTable(G);
 

Regular extensions

f1=f_{ 1 } = 16x10+(4t220)x8+(24t240)x6+(t4+14t2+35)x4+(2t4+16t2+30)x2+(t46t29)16 x^{10} + \left(4 t^{2} - 20\right) x^{8} + \left(-24 t^{2} - 40\right) x^{6} + \left(-t^{4} + 14 t^{2} + 35\right) x^{4} + \left(2 t^{4} + 16 t^{2} + 30\right) x^{2} + \left(-t^{4} - 6 t^{2} - 9\right) Copy content Toggle raw display