Show commands:
Magma
magma: G := TransitiveGroup(12, 14);
Group action invariants
Degree $n$: | $12$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $14$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $D_4 \times C_3$ | ||
CHM label: | $D(4)[x]C(3)$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $6$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,7)(3,9)(5,11), (1,5,9)(2,6,10)(3,7,11)(4,8,12), (1,4,7,10)(2,5,8,11)(3,6,9,12) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $3$: $C_3$ $4$: $C_2^2$ $6$: $C_6$ x 3 $8$: $D_{4}$ $12$: $C_6\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Degree 4: $D_{4}$
Degree 6: $C_6$
Low degree siblings
12T14, 24T15Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{12}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{6}$ | $1$ | $2$ | $6$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
2B | $2^{6}$ | $2$ | $2$ | $6$ | $( 1, 4)( 2,11)( 3, 6)( 5, 8)( 7,10)( 9,12)$ |
2C | $2^{3},1^{6}$ | $2$ | $2$ | $3$ | $( 1, 7)( 3, 9)( 5,11)$ |
3A1 | $3^{4}$ | $1$ | $3$ | $8$ | $( 1, 9, 5)( 2,10, 6)( 3,11, 7)( 4,12, 8)$ |
3A-1 | $3^{4}$ | $1$ | $3$ | $8$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
4A | $4^{3}$ | $2$ | $4$ | $9$ | $( 1, 4, 7,10)( 2, 5, 8,11)( 3, 6, 9,12)$ |
6A1 | $6^{2}$ | $1$ | $6$ | $10$ | $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$ |
6A-1 | $6^{2}$ | $1$ | $6$ | $10$ | $( 1,11, 9, 7, 5, 3)( 2,12,10, 8, 6, 4)$ |
6B1 | $6^{2}$ | $2$ | $6$ | $10$ | $( 1,12, 5, 4, 9, 8)( 2, 7, 6,11,10, 3)$ |
6B-1 | $6,3^{2}$ | $2$ | $6$ | $9$ | $( 1,11, 9, 7, 5, 3)( 2, 6,10)( 4, 8,12)$ |
6C1 | $6^{2}$ | $2$ | $6$ | $10$ | $( 1, 8, 9, 4, 5,12)( 2, 3,10,11, 6, 7)$ |
6C-1 | $6,3^{2}$ | $2$ | $6$ | $9$ | $( 1, 3, 5, 7, 9,11)( 2,10, 6)( 4,12, 8)$ |
12A1 | $12$ | $2$ | $12$ | $11$ | $( 1, 8, 3,10, 5,12, 7, 2, 9, 4,11, 6)$ |
12A-1 | $12$ | $2$ | $12$ | $11$ | $( 1,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)$ |
Malle's constant $a(G)$: $1/3$
magma: ConjugacyClasses(G);
Group invariants
Order: | $24=2^{3} \cdot 3$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | $2$ | ||
Label: | 24.10 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 3A1 | 3A-1 | 4A | 6A1 | 6A-1 | 6B1 | 6B-1 | 6C1 | 6C-1 | 12A1 | 12A-1 | ||
Size | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | |
2 P | 1A | 1A | 1A | 1A | 3A-1 | 3A1 | 2A | 3A-1 | 3A1 | 3A-1 | 3A1 | 3A1 | 3A-1 | 6A1 | 6A-1 | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 4A | 2A | 2A | 2B | 2C | 2B | 2C | 4A | 4A | |
Type | ||||||||||||||||
24.10.1a | R | |||||||||||||||
24.10.1b | R | |||||||||||||||
24.10.1c | R | |||||||||||||||
24.10.1d | R | |||||||||||||||
24.10.1e1 | C | |||||||||||||||
24.10.1e2 | C | |||||||||||||||
24.10.1f1 | C | |||||||||||||||
24.10.1f2 | C | |||||||||||||||
24.10.1g1 | C | |||||||||||||||
24.10.1g2 | C | |||||||||||||||
24.10.1h1 | C | |||||||||||||||
24.10.1h2 | C | |||||||||||||||
24.10.2a | R | |||||||||||||||
24.10.2b1 | C | |||||||||||||||
24.10.2b2 | C |
magma: CharacterTable(G);