Show commands:
Magma
magma: G := TransitiveGroup(12, 37);
Group action invariants
Degree $n$: | $12$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $37$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $S_3\times D_6$ | ||
CHM label: | $[3^{2}:2]E(4)$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,10)(2,5)(3,12)(4,7)(6,9)(8,11), (1,5)(2,10)(4,8)(7,11), (2,6,10)(4,8,12), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ x 2 $8$: $C_2^3$ $12$: $D_{6}$ x 6 $24$: $S_3 \times C_2^2$ x 2 $36$: $S_3^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: None
Degree 4: $C_2^2$
Degree 6: $S_3^2$
Low degree siblings
12T37, 18T29 x 4, 24T73, 36T34 x 2, 36T40 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{12}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{6}$ | $1$ | $2$ | $6$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,11)( 6,12)$ |
2B | $2^{6}$ | $3$ | $2$ | $6$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)$ |
2C | $2^{6}$ | $3$ | $2$ | $6$ | $( 1, 4)( 2,11)( 3, 6)( 5, 8)( 7,10)( 9,12)$ |
2D | $2^{6}$ | $3$ | $2$ | $6$ | $( 1, 8)( 2, 7)( 3, 6)( 4, 5)( 9,12)(10,11)$ |
2E | $2^{6}$ | $3$ | $2$ | $6$ | $( 1, 2)( 3,12)( 4,11)( 5,10)( 6, 9)( 7, 8)$ |
2F | $2^{6}$ | $9$ | $2$ | $6$ | $( 1, 7)( 2,12)( 3, 5)( 4,10)( 6, 8)( 9,11)$ |
2G | $2^{4},1^{4}$ | $9$ | $2$ | $4$ | $( 1, 9)( 2,10)( 3, 7)( 4, 8)$ |
3A | $3^{4}$ | $2$ | $3$ | $8$ | $( 1, 9, 5)( 2,10, 6)( 3,11, 7)( 4,12, 8)$ |
3B | $3^{4}$ | $2$ | $3$ | $8$ | $( 1, 5, 9)( 2,10, 6)( 3, 7,11)( 4,12, 8)$ |
3C | $3^{2},1^{6}$ | $4$ | $3$ | $4$ | $( 2, 6,10)( 4, 8,12)$ |
6A | $6^{2}$ | $2$ | $6$ | $10$ | $( 1, 3, 5, 7, 9,11)( 2, 4, 6, 8,10,12)$ |
6B | $6^{2}$ | $2$ | $6$ | $10$ | $( 1, 3, 5, 7, 9,11)( 2,12,10, 8, 6, 4)$ |
6C | $6,2^{3}$ | $4$ | $6$ | $8$ | $( 1,11, 9, 7, 5, 3)( 2, 8)( 4,10)( 6,12)$ |
6D | $6^{2}$ | $6$ | $6$ | $10$ | $( 1,10, 9, 2, 5, 6)( 3, 8,11,12, 7, 4)$ |
6E | $6^{2}$ | $6$ | $6$ | $10$ | $( 1, 8, 9, 4, 5,12)( 2, 3,10,11, 6, 7)$ |
6F | $6^{2}$ | $6$ | $6$ | $10$ | $( 1, 6, 9, 2, 5,10)( 3, 8,11, 4, 7,12)$ |
6G | $6^{2}$ | $6$ | $6$ | $10$ | $( 1,12, 5, 8, 9, 4)( 2, 3,10, 7, 6,11)$ |
Malle's constant $a(G)$: $1/4$
magma: ConjugacyClasses(G);
Group invariants
Order: | $72=2^{3} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 72.46 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 6A | 6B | 6C | 6D | 6E | 6F | 6G | ||
Size | 1 | 1 | 3 | 3 | 3 | 3 | 9 | 9 | 2 | 2 | 4 | 2 | 2 | 4 | 6 | 6 | 6 | 6 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 3A | 3B | 3C | 3B | 3A | 3A | 3B | |
3 P | 1A | 2A | 2D | 2C | 2E | 2B | 2F | 2G | 1A | 1A | 1A | 2A | 2A | 2A | 2B | 2C | 2D | 2E | |
Type | |||||||||||||||||||
72.46.1a | R | ||||||||||||||||||
72.46.1b | R | ||||||||||||||||||
72.46.1c | R | ||||||||||||||||||
72.46.1d | R | ||||||||||||||||||
72.46.1e | R | ||||||||||||||||||
72.46.1f | R | ||||||||||||||||||
72.46.1g | R | ||||||||||||||||||
72.46.1h | R | ||||||||||||||||||
72.46.2a | R | ||||||||||||||||||
72.46.2b | R | ||||||||||||||||||
72.46.2c | R | ||||||||||||||||||
72.46.2d | R | ||||||||||||||||||
72.46.2e | R | ||||||||||||||||||
72.46.2f | R | ||||||||||||||||||
72.46.2g | R | ||||||||||||||||||
72.46.2h | R | ||||||||||||||||||
72.46.4a | R | ||||||||||||||||||
72.46.4b | R |
magma: CharacterTable(G);