Show commands:
Magma
magma: G := TransitiveGroup(12, 43);
Group action invariants
Degree $n$: | $12$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $43$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $S_3\times A_4$ | ||
CHM label: | $A(4)[x]S(3)$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,7,10)(2,5,11)(3,6,9), (2,8,11)(3,6,12)(4,7,10), (1,5)(2,10)(4,8)(7,11), (1,5,9)(2,6,10)(3,7,11)(4,8,12) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $S_3$, $C_6$ $12$: $A_4$ $18$: $S_3\times C_3$ $24$: $A_4\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: $A_4$
Degree 6: None
Low degree siblings
18T31, 18T32, 24T78, 24T83, 36T21, 36T50, 36T51Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{12}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{6}$ | $3$ | $2$ | $6$ | $( 1, 4)( 2,11)( 3, 6)( 5, 8)( 7,10)( 9,12)$ |
2B | $2^{4},1^{4}$ | $3$ | $2$ | $4$ | $( 2, 6)( 3,11)( 5, 9)( 8,12)$ |
2C | $2^{6}$ | $9$ | $2$ | $6$ | $( 1, 4)( 2, 3)( 5,12)( 6,11)( 7,10)( 8, 9)$ |
3A | $3^{4}$ | $2$ | $3$ | $8$ | $( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12)$ |
3B1 | $3^{3},1^{3}$ | $4$ | $3$ | $6$ | $( 2, 8,11)( 3, 6,12)( 4, 7,10)$ |
3B-1 | $3^{3},1^{3}$ | $4$ | $3$ | $6$ | $( 2,11, 8)( 3,12, 6)( 4,10, 7)$ |
3C1 | $3^{4}$ | $8$ | $3$ | $8$ | $( 1, 5, 9)( 2, 3, 4)( 6, 7, 8)(10,11,12)$ |
3C-1 | $3^{4}$ | $8$ | $3$ | $8$ | $( 1, 5, 9)( 2,12, 7)( 3,10, 8)( 4,11, 6)$ |
6A | $6^{2}$ | $6$ | $6$ | $10$ | $( 1, 8, 9, 4, 5,12)( 2, 3,10,11, 6, 7)$ |
6B1 | $6,3,2,1$ | $12$ | $6$ | $8$ | $( 2, 3, 8, 6,11,12)( 4,10, 7)( 5, 9)$ |
6B-1 | $6,3,2,1$ | $12$ | $6$ | $8$ | $( 2,12,11, 6, 8, 3)( 4, 7,10)( 5, 9)$ |
Malle's constant $a(G)$: $1/4$
magma: ConjugacyClasses(G);
Group invariants
Order: | $72=2^{3} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 72.44 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 3A | 3B1 | 3B-1 | 3C1 | 3C-1 | 6A | 6B1 | 6B-1 | ||
Size | 1 | 3 | 3 | 9 | 2 | 4 | 4 | 8 | 8 | 6 | 12 | 12 | |
2 P | 1A | 1A | 1A | 1A | 3A | 3B-1 | 3B1 | 3C-1 | 3C1 | 3A | 3B1 | 3B-1 | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 1A | 1A | 2A | 2B | 2B | |
Type | |||||||||||||
72.44.1a | R | ||||||||||||
72.44.1b | R | ||||||||||||
72.44.1c1 | C | ||||||||||||
72.44.1c2 | C | ||||||||||||
72.44.1d1 | C | ||||||||||||
72.44.1d2 | C | ||||||||||||
72.44.2a | R | ||||||||||||
72.44.2b1 | C | ||||||||||||
72.44.2b2 | C | ||||||||||||
72.44.3a | R | ||||||||||||
72.44.3b | R | ||||||||||||
72.44.6a | R |
magma: CharacterTable(G);