Show commands:
Magma
magma: G := TransitiveGroup(12, 6);
Group action invariants
Degree $n$: | $12$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $6$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $A_4\times C_2$ | ||
CHM label: | $A_{4}(12)x2$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $4$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,9,5)(2,4,3)(6,8,7)(10,12,11), (1,7)(2,11)(3,12)(4,10)(5,8)(6,9), (1,11,6)(2,9,7)(3,10,5)(4,8,12) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $C_6$ $12$: $A_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 4: None
Degree 6: $A_4$, $A_4\times C_2$
Low degree siblings
6T6, 8T13, 12T7, 24T9Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{12}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{6}$ | $1$ | $2$ | $6$ | $( 1, 7)( 2,11)( 3,12)( 4,10)( 5, 8)( 6, 9)$ |
2B | $2^{6}$ | $3$ | $2$ | $6$ | $( 1, 4)( 2,11)( 3, 6)( 5, 8)( 7,10)( 9,12)$ |
2C | $2^{4},1^{4}$ | $3$ | $2$ | $4$ | $( 1,10)( 3, 9)( 4, 7)( 6,12)$ |
3A1 | $3^{4}$ | $4$ | $3$ | $8$ | $( 1, 9, 5)( 2, 4, 3)( 6, 8, 7)(10,12,11)$ |
3A-1 | $3^{4}$ | $4$ | $3$ | $8$ | $( 1, 5, 9)( 2, 3, 4)( 6, 7, 8)(10,11,12)$ |
6A1 | $6^{2}$ | $4$ | $6$ | $10$ | $( 1, 8, 9, 7, 5, 6)( 2,12, 4,11, 3,10)$ |
6A-1 | $6^{2}$ | $4$ | $6$ | $10$ | $( 1, 6, 5, 7, 9, 8)( 2,10, 3,11, 4,12)$ |
Malle's constant $a(G)$: $1/4$
magma: ConjugacyClasses(G);
Group invariants
Order: | $24=2^{3} \cdot 3$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 24.13 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 3A1 | 3A-1 | 6A1 | 6A-1 | ||
Size | 1 | 1 | 3 | 3 | 4 | 4 | 4 | 4 | |
2 P | 1A | 1A | 1A | 1A | 3A-1 | 3A1 | 3A1 | 3A-1 | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 2A | 2A | |
Type | |||||||||
24.13.1a | R | ||||||||
24.13.1b | R | ||||||||
24.13.1c1 | C | ||||||||
24.13.1c2 | C | ||||||||
24.13.1d1 | C | ||||||||
24.13.1d2 | C | ||||||||
24.13.3a | R | ||||||||
24.13.3b | R |
magma: CharacterTable(G);