Properties

Label 12T6
Degree $12$
Order $24$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $A_4\times C_2$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(12, 6);
 

Group action invariants

Degree $n$:  $12$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $6$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $A_4\times C_2$
CHM label:   $A_{4}(12)x2$
Parity:  $1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $4$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,9,5)(2,4,3)(6,8,7)(10,12,11), (1,7)(2,11)(3,12)(4,10)(5,8)(6,9), (1,11,6)(2,9,7)(3,10,5)(4,8,12)
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$3$:  $C_3$
$6$:  $C_6$
$12$:  $A_4$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $C_3$

Degree 4: None

Degree 6: $A_4$, $A_4\times C_2$

Low degree siblings

6T6, 8T13, 12T7, 24T9

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{12}$ $1$ $1$ $0$ $()$
2A $2^{6}$ $1$ $2$ $6$ $( 1, 7)( 2,11)( 3,12)( 4,10)( 5, 8)( 6, 9)$
2B $2^{6}$ $3$ $2$ $6$ $( 1, 4)( 2,11)( 3, 6)( 5, 8)( 7,10)( 9,12)$
2C $2^{4},1^{4}$ $3$ $2$ $4$ $( 1,10)( 3, 9)( 4, 7)( 6,12)$
3A1 $3^{4}$ $4$ $3$ $8$ $( 1, 9, 5)( 2, 4, 3)( 6, 8, 7)(10,12,11)$
3A-1 $3^{4}$ $4$ $3$ $8$ $( 1, 5, 9)( 2, 3, 4)( 6, 7, 8)(10,11,12)$
6A1 $6^{2}$ $4$ $6$ $10$ $( 1, 8, 9, 7, 5, 6)( 2,12, 4,11, 3,10)$
6A-1 $6^{2}$ $4$ $6$ $10$ $( 1, 6, 5, 7, 9, 8)( 2,10, 3,11, 4,12)$

Malle's constant $a(G)$:     $1/4$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $24=2^{3} \cdot 3$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  24.13
magma: IdentifyGroup(G);
 
Character table:

1A 2A 2B 2C 3A1 3A-1 6A1 6A-1
Size 1 1 3 3 4 4 4 4
2 P 1A 1A 1A 1A 3A-1 3A1 3A1 3A-1
3 P 1A 2A 2B 2C 1A 1A 2A 2A
Type
24.13.1a R 1 1 1 1 1 1 1 1
24.13.1b R 1 1 1 1 1 1 1 1
24.13.1c1 C 1 1 1 1 ζ31 ζ3 ζ3 ζ31
24.13.1c2 C 1 1 1 1 ζ3 ζ31 ζ31 ζ3
24.13.1d1 C 1 1 1 1 ζ31 ζ3 ζ3 ζ31
24.13.1d2 C 1 1 1 1 ζ3 ζ31 ζ31 ζ3
24.13.3a R 3 3 1 1 0 0 0 0
24.13.3b R 3 3 1 1 0 0 0 0

magma: CharacterTable(G);