Properties

Label 16T1672
Degree $16$
Order $6144$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_4^4:\SL(2,3)$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(16, 1672);
 

Group action invariants

Degree $n$:  $16$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $1672$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $C_4^4:\SL(2,3)$
Parity:  $-1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $2$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,3)(2,4)(5,16,12,6,15,11)(7,14,10)(8,13,9), (1,15,8,4,13,5,2,16,7,3,14,6)(9,11,10,12)
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$3$:  $C_3$
$6$:  $C_6$
$12$:  $A_4$
$24$:  $A_4\times C_2$, $\SL(2,3)$ x 2
$48$:  16T59
$96$:  $C_2^4:C_6$
$192$:  $C_2\wr A_4$ x 2, 24T291
$384$:  16T726 x 2, 16T729
$768$:  32T34813
$3072$:  48T?

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: $A_4$

Degree 8: $C_2\wr A_4$

Low degree siblings

16T1672 x 7, 32T397446 x 4, 32T397447 x 4, 32T397448 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $6144=2^{11} \cdot 3$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  6144.da
magma: IdentifyGroup(G);
 
Character table:    56 x 56 character table

magma: CharacterTable(G);