Show commands:
Magma
magma: G := TransitiveGroup(16, 30);
Group action invariants
Degree $n$: | $16$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $30$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_4^2:C_2$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $4$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,14,16,12)(2,13,15,11)(3,8,5,10)(4,7,6,9), (1,5)(2,6)(3,16)(4,15)(7,14)(8,13)(9,12)(10,11), (1,4,2,3)(5,16,6,15)(7,13,8,14)(9,11,10,12) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 2, $C_2^3$ $16$: $D_4\times C_2$, $Q_8:C_2$ x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4\times C_2$, $Q_8:C_2$ x 2
Low degree siblings
16T30, 32T16Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2B | $2^{8}$ | $1$ | $2$ | $8$ | $( 1,15)( 2,16)( 3, 6)( 4, 5)( 7,10)( 8, 9)(11,14)(12,13)$ |
2C | $2^{8}$ | $1$ | $2$ | $8$ | $( 1,16)( 2,15)( 3, 5)( 4, 6)( 7, 9)( 8,10)(11,13)(12,14)$ |
2D | $2^{6},1^{4}$ | $4$ | $2$ | $6$ | $( 3, 4)( 5, 6)( 7, 9)( 8,10)(11,14)(12,13)$ |
2E | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 6)( 2, 5)( 3,15)( 4,16)( 7,13)( 8,14)( 9,11)(10,12)$ |
4A | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 4, 2, 3)( 5,16, 6,15)( 7,13, 8,14)( 9,11,10,12)$ |
4B | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 9,15, 8)( 2,10,16, 7)( 3,12, 6,13)( 4,11, 5,14)$ |
4C1 | $4^{4}$ | $2$ | $4$ | $12$ | $( 1,14,16,12)( 2,13,15,11)( 3, 8, 5,10)( 4, 7, 6, 9)$ |
4C-1 | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 5, 2, 6)( 3,15, 4,16)( 7,12, 8,11)( 9,14,10,13)$ |
4D1 | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 8,15, 9)( 2, 7,16,10)( 3,13, 6,12)( 4,14, 5,11)$ |
4D-1 | $4^{4}$ | $2$ | $4$ | $12$ | $( 1,12,16,14)( 2,11,15,13)( 3,10, 5, 8)( 4, 9, 6, 7)$ |
4E | $4^{4}$ | $4$ | $4$ | $12$ | $( 1,12, 2,11)( 3, 9, 4,10)( 5, 7, 6, 8)(13,16,14,15)$ |
4F | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 9, 2,10)( 3,11, 4,12)( 5,13, 6,14)( 7,15, 8,16)$ |
Malle's constant $a(G)$: $1/6$
magma: ConjugacyClasses(G);
Group invariants
Order: | $32=2^{5}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | $2$ | ||
Label: | 32.31 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C1 | 4C-1 | 4D1 | 4D-1 | 4E | 4F | ||
Size | 1 | 1 | 1 | 1 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2B | 2C | 2A | 2B | 2C | 2A | 2A | |
Type | |||||||||||||||
32.31.1a | R | ||||||||||||||
32.31.1b | R | ||||||||||||||
32.31.1c | R | ||||||||||||||
32.31.1d | R | ||||||||||||||
32.31.1e | R | ||||||||||||||
32.31.1f | R | ||||||||||||||
32.31.1g | R | ||||||||||||||
32.31.1h | R | ||||||||||||||
32.31.2a | R | ||||||||||||||
32.31.2b | R | ||||||||||||||
32.31.2c1 | C | ||||||||||||||
32.31.2c2 | C | ||||||||||||||
32.31.2d1 | C | ||||||||||||||
32.31.2d2 | C |
magma: CharacterTable(G);