Show commands:
Magma
magma: G := TransitiveGroup(16, 34);
Group action invariants
Degree $n$: | $16$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $34$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_4:D_4$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $4$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,11,16,13)(2,12,15,14)(3,9,5,7)(4,10,6,8), (1,15)(2,16)(3,5)(4,6)(7,8)(9,10), (1,10,16,8)(2,9,15,7)(3,12,5,14)(4,11,6,13) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 4, $C_2^3$ $16$: $D_4\times C_2$ x 2, $Q_8:C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 4
Degree 8: $D_4\times C_2$ x 2, $Q_8:C_2$
Low degree siblings
16T34, 16T43 x 2, 32T20Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1,15)( 2,16)( 3, 6)( 4, 5)( 7,10)( 8, 9)(11,14)(12,13)$ |
2B | $2^{8}$ | $1$ | $2$ | $8$ | $( 1,16)( 2,15)( 3, 5)( 4, 6)( 7, 9)( 8,10)(11,13)(12,14)$ |
2C | $2^{8}$ | $1$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2D | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 4)( 2, 3)( 5,15)( 6,16)( 7,14)( 8,13)( 9,12)(10,11)$ |
2E | $2^{8}$ | $2$ | $2$ | $8$ | $( 1, 6)( 2, 5)( 3,15)( 4,16)( 7,12)( 8,11)( 9,14)(10,13)$ |
2F | $2^{6},1^{4}$ | $4$ | $2$ | $6$ | $( 1, 2)( 7,10)( 8, 9)(11,13)(12,14)(15,16)$ |
2G | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 7)( 2, 8)( 3,14)( 4,13)( 5,12)( 6,11)( 9,16)(10,15)$ |
4A | $4^{4}$ | $2$ | $4$ | $12$ | $( 1,11,16,13)( 2,12,15,14)( 3, 9, 5, 7)( 4,10, 6, 8)$ |
4B | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 9,16, 7)( 2,10,15, 8)( 3,11, 5,13)( 4,12, 6,14)$ |
4C1 | $4^{4}$ | $2$ | $4$ | $12$ | $( 1,10,16, 8)( 2, 9,15, 7)( 3,12, 5,14)( 4,11, 6,13)$ |
4C-1 | $4^{4}$ | $2$ | $4$ | $12$ | $( 1,13,16,11)( 2,14,15,12)( 3, 7, 5, 9)( 4, 8, 6,10)$ |
4D | $4^{4}$ | $4$ | $4$ | $12$ | $( 1, 4, 2, 3)( 5,16, 6,15)( 7,12, 8,11)( 9,14,10,13)$ |
4E | $4^{4}$ | $4$ | $4$ | $12$ | $( 1,13, 2,14)( 3, 8, 4, 7)( 5,10, 6, 9)(11,15,12,16)$ |
Malle's constant $a(G)$: $1/6$
magma: ConjugacyClasses(G);
Group invariants
Order: | $32=2^{5}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | $2$ | ||
Label: | 32.28 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C1 | 4C-1 | 4D | 4E | ||
Size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2B | 2B | 2B | 2B | 2C | 2C | |
Type | |||||||||||||||
32.28.1a | R | ||||||||||||||
32.28.1b | R | ||||||||||||||
32.28.1c | R | ||||||||||||||
32.28.1d | R | ||||||||||||||
32.28.1e | R | ||||||||||||||
32.28.1f | R | ||||||||||||||
32.28.1g | R | ||||||||||||||
32.28.1h | R | ||||||||||||||
32.28.2a | R | ||||||||||||||
32.28.2b | R | ||||||||||||||
32.28.2c | R | ||||||||||||||
32.28.2d | R | ||||||||||||||
32.28.2e1 | C | ||||||||||||||
32.28.2e2 | C |
magma: CharacterTable(G);