Show commands:
Magma
magma: G := TransitiveGroup(17, 10);
Group action invariants
Degree : | magma: t, n := TransitiveGroupIdentification(G); n;
| ||
Transitive number : | magma: t, n := TransitiveGroupIdentification(G); t;
| ||
Group: | |||
Parity: | magma: IsEven(G);
| ||
Primitive: | yes | magma: IsPrimitive(G);
| |
magma: NilpotencyClass(G);
| |||
: | magma: Order(Centralizer(SymmetricGroup(n), G));
| ||
Generators: | (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17), (1,2) | magma: Generators(G);
|
Low degree resolvents
Galois groups for stem field(s) : Resolvents shown for degrees
Subfields
Prime degree - none
Low degree siblings
There are no siblings with degree
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
magma: ConjugacyClasses(G);
Group invariants
Order: | magma: Order(G);
| ||
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 355687428096000.a | magma: IdentifyGroup(G);
| |
Character table: | not computed |
magma: CharacterTable(G);