Show commands:
Magma
magma: G := TransitiveGroup(18, 653);
Group action invariants
Degree : | magma: t, n := TransitiveGroupIdentification(G); n;
| ||
Transitive number : | magma: t, n := TransitiveGroupIdentification(G); t;
| ||
Group: | |||
Parity: | magma: IsEven(G);
| ||
Primitive: | no | magma: IsPrimitive(G);
| |
magma: NilpotencyClass(G);
| |||
: | magma: Order(Centralizer(SymmetricGroup(n), G));
| ||
Generators: | (1,11,15,16,7,5,2,10,14,18,9,4,3,12,13,17,8,6), (4,17)(5,18)(6,16)(7,14,8,15,9,13), (1,9)(2,8)(3,7)(4,5,6)(10,16,12,18,11,17) | magma: Generators(G);
|
Low degree resolvents
Galois groups for stem field(s) : x 3 : : : x 3, x 3 : x 3, : x 3 : x 3, x 3 : 12T70 x 3, 12T71 : 12T130 : 27T271 x 2 : 18T409 : 27T726, 27T791 Resolvents shown for degrees
Subfields
Degree 3: None
Degree 9: None
Low degree siblings
18T653 x 8, 36T12787 x 9, 36T12879 x 9Siblings are shown with degree
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
magma: ConjugacyClasses(G);
Group invariants
Order: | magma: Order(G);
| ||
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 26244.dw | magma: IdentifyGroup(G);
| |
Character table: | not computed |
magma: CharacterTable(G);