Properties

Label 20T19
20T19 1 15 1->15 18 1->18 2 16 2->16 17 2->17 3 11 3->11 3->18 4 12 4->12 4->17 5 6 5->6 19 5->19 20 6->20 7 7->2 7->20 8 8->1 8->19 9 9->3 14 9->14 10 10->4 13 10->13 11->6 11->7 12->5 12->8 13->1 13->7 14->2 14->8 15->10 16->9 17->9 17->12 18->10 18->11 19->4 19->14 20->3 20->13
Degree 2020
Order 8080
Cyclic no
Abelian no
Solvable yes
Primitive no
pp-group no
Group: D10:C4D_{10}:C_4

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(20, 19);
 

Group invariants

Abstract group:  D10:C4D_{10}:C_4
Copy content magma:IdentifyGroup(G);
 
Order:  80=24580=2^{4} \cdot 5
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree nn:  2020
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number tt:  1919
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  1-1
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
#Aut(F/K)\card{\Aut(F/K)}:  22
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,18,10,13)(2,17,9,14)(3,11,7,20)(4,12,8,19)(5,6)(1,18,10,13)(2,17,9,14)(3,11,7,20)(4,12,8,19)(5,6), (1,15,10,4,17,12,5,19,14,8)(2,16,9,3,18,11,6,20,13,7)(1,15,10,4,17,12,5,19,14,8)(2,16,9,3,18,11,6,20,13,7)
Copy content magma:Generators(G);
 

Low degree resolvents

#(G/N)\card{(G/N)}Galois groups for stem field(s)
22C2C_2 x 3
44C4C_4 x 2, C22C_2^2
88D4D_{4} x 2, C4×C2C_4\times C_2
1616C22:C4C_2^2:C_4
2020F5F_5
4040F5×C2F_{5}\times C_2

Resolvents shown for degrees 47\leq 47

Subfields

Degree 2: C2C_2

Degree 4: D4D_{4}

Degree 5: F5F_5

Degree 10: F5×C2F_{5}\times C_2

Low degree siblings

20T19, 20T22 x 2, 40T26, 40T45, 40T55 x 2

Siblings are shown with degree 47\leq 47

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A 1201^{20} 11 11 00 ()()
2A 2102^{10} 11 22 1010 (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
2B 2102^{10} 22 22 1010 (1,12)(2,11)(3,13)(4,14)(5,15)(6,16)(7,18)(8,17)(9,20)(10,19)( 1,12)( 2,11)( 3,13)( 4,14)( 5,15)( 6,16)( 7,18)( 8,17)( 9,20)(10,19)
2C 2102^{10} 55 22 1010 (1,6)(2,5)(3,4)(7,19)(8,20)(9,17)(10,18)(11,15)(12,16)(13,14)( 1, 6)( 2, 5)( 3, 4)( 7,19)( 8,20)( 9,17)(10,18)(11,15)(12,16)(13,14)
2D 28,142^{8},1^{4} 55 22 88 (3,20)(4,19)(5,17)(6,18)(7,16)(8,15)(9,13)(10,14)( 3,20)( 4,19)( 5,17)( 6,18)( 7,16)( 8,15)( 9,13)(10,14)
2E 2102^{10} 1010 22 1010 (1,16)(2,15)(3,14)(4,13)(5,11)(6,12)(7,10)(8,9)(17,20)(18,19)( 1,16)( 2,15)( 3,14)( 4,13)( 5,11)( 6,12)( 7,10)( 8, 9)(17,20)(18,19)
4A1 454^{5} 1010 44 1515 (1,7,6,19)(2,8,5,20)(3,13,4,14)(9,12,17,16)(10,11,18,15)( 1, 7, 6,19)( 2, 8, 5,20)( 3,13, 4,14)( 9,12,17,16)(10,11,18,15)
4A-1 454^{5} 1010 44 1515 (1,19,6,7)(2,20,5,8)(3,14,4,13)(9,16,17,12)(10,15,18,11)( 1,19, 6, 7)( 2,20, 5, 8)( 3,14, 4,13)( 9,16,17,12)(10,15,18,11)
4B1 44,2,124^{4},2,1^{2} 1010 44 1313 (3,15,20,8)(4,16,19,7)(5,10,17,14)(6,9,18,13)(11,12)( 3,15,20, 8)( 4,16,19, 7)( 5,10,17,14)( 6, 9,18,13)(11,12)
4B-1 44,2,124^{4},2,1^{2} 1010 44 1313 (3,8,20,15)(4,7,19,16)(5,14,17,10)(6,13,18,9)(11,12)( 3, 8,20,15)( 4, 7,19,16)( 5,14,17,10)( 6,13,18, 9)(11,12)
5A 545^{4} 44 55 1616 (1,10,17,5,14)(2,9,18,6,13)(3,11,20,7,16)(4,12,19,8,15)( 1,10,17, 5,14)( 2, 9,18, 6,13)( 3,11,20, 7,16)( 4,12,19, 8,15)
10A 10210^{2} 44 1010 1818 (1,6,10,13,17,2,5,9,14,18)(3,8,11,15,20,4,7,12,16,19)( 1, 6,10,13,17, 2, 5, 9,14,18)( 3, 8,11,15,20, 4, 7,12,16,19)
10B1 10210^{2} 44 1010 1818 (1,4,5,8,10,12,14,15,17,19)(2,3,6,7,9,11,13,16,18,20)( 1, 4, 5, 8,10,12,14,15,17,19)( 2, 3, 6, 7, 9,11,13,16,18,20)
10B3 10210^{2} 44 1010 1818 (1,8,14,19,5,12,17,4,10,15)(2,7,13,20,6,11,18,3,9,16)( 1, 8,14,19, 5,12,17, 4,10,15)( 2, 7,13,20, 6,11,18, 3, 9,16)

Malle's constant a(G)a(G):     1/81/8

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 2B 2C 2D 2E 4A1 4A-1 4B1 4B-1 5A 10A 10B1 10B3
Size 1 1 2 5 5 10 10 10 10 10 4 4 4 4
2 P 1A 1A 1A 1A 1A 1A 2C 2C 2D 2D 5A 5A 5A 5A
5 P 1A 2A 2B 2C 2D 2E 4A1 4A-1 4B1 4B-1 1A 2A 2B 2B
Type
80.34.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
80.34.1b R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
80.34.1c R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
80.34.1d R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
80.34.1e1 C 1 1 1 1 1 1 i i i i 1 1 1 1
80.34.1e2 C 1 1 1 1 1 1 i i i i 1 1 1 1
80.34.1f1 C 1 1 1 1 1 1 i i i i 1 1 1 1
80.34.1f2 C 1 1 1 1 1 1 i i i i 1 1 1 1
80.34.2a R 2 2 0 2 2 0 0 0 0 0 2 2 0 0
80.34.2b R 2 2 0 2 2 0 0 0 0 0 2 2 0 0
80.34.4a R 4 4 4 0 0 0 0 0 0 0 1 1 1 1
80.34.4b R 4 4 4 0 0 0 0 0 0 0 1 1 1 1
80.34.4c1 R 4 4 0 0 0 0 0 0 0 0 1 1 2ζ52+1+2ζ52 2ζ5212ζ52
80.34.4c2 R 4 4 0 0 0 0 0 0 0 0 1 1 2ζ5212ζ52 2ζ52+1+2ζ52

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed