Show commands:
Magma
magma: G := TransitiveGroup(20, 19);
Group action invariants
Degree $n$: | $20$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $19$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $D_{10}:C_4$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,18,10,13)(2,17,9,14)(3,11,7,20)(4,12,8,19)(5,6), (1,15,10,4,17,12,5,19,14,8)(2,16,9,3,18,11,6,20,13,7) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$ x 2, $C_4\times C_2$ $16$: $C_2^2:C_4$ $20$: $F_5$ $40$: $F_{5}\times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 5: $F_5$
Degree 10: $F_{5}\times C_2$
Low degree siblings
20T19, 20T22 x 2, 40T26, 40T45, 40T55 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{20}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{10}$ | $1$ | $2$ | $10$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
2B | $2^{10}$ | $2$ | $2$ | $10$ | $( 1,12)( 2,11)( 3,13)( 4,14)( 5,15)( 6,16)( 7,18)( 8,17)( 9,20)(10,19)$ |
2C | $2^{10}$ | $5$ | $2$ | $10$ | $( 1, 9)( 2,10)( 3, 8)( 4, 7)( 5, 6)(11,19)(12,20)(13,17)(14,18)(15,16)$ |
2D | $2^{8},1^{4}$ | $5$ | $2$ | $8$ | $( 1,10)( 2, 9)( 3, 7)( 4, 8)(11,20)(12,19)(13,18)(14,17)$ |
2E | $2^{10}$ | $10$ | $2$ | $10$ | $( 1, 8)( 2, 7)( 3, 6)( 4, 5)( 9,20)(10,19)(11,18)(12,17)(13,16)(14,15)$ |
4A1 | $4^{4},2,1^{2}$ | $10$ | $4$ | $13$ | $( 1,13,10,18)( 2,14, 9,17)( 3,20, 7,11)( 4,19, 8,12)( 5, 6)$ |
4A-1 | $4^{4},2,1^{2}$ | $10$ | $4$ | $13$ | $( 1,18,10,13)( 2,17, 9,14)( 3,11, 7,20)( 4,12, 8,19)( 5, 6)$ |
4B1 | $4^{5}$ | $10$ | $4$ | $15$ | $( 1,12, 2,11)( 3, 5,19,18)( 4, 6,20,17)( 7,14,15, 9)( 8,13,16,10)$ |
4B-1 | $4^{5}$ | $10$ | $4$ | $15$ | $( 1,19,13,16)( 2,20,14,15)( 3, 5,12, 9)( 4, 6,11,10)( 7,17, 8,18)$ |
5A | $5^{4}$ | $4$ | $5$ | $16$ | $( 1, 5,10,14,17)( 2, 6, 9,13,18)( 3, 7,11,16,20)( 4, 8,12,15,19)$ |
10A | $10^{2}$ | $4$ | $10$ | $18$ | $( 1, 6,10,13,17, 2, 5, 9,14,18)( 3, 8,11,15,20, 4, 7,12,16,19)$ |
10B1 | $10^{2}$ | $4$ | $10$ | $18$ | $( 1, 4, 5, 8,10,12,14,15,17,19)( 2, 3, 6, 7, 9,11,13,16,18,20)$ |
10B3 | $10^{2}$ | $4$ | $10$ | $18$ | $( 1, 8,14,19, 5,12,17, 4,10,15)( 2, 7,13,20, 6,11,18, 3, 9,16)$ |
Malle's constant $a(G)$: $1/8$
magma: ConjugacyClasses(G);
Group invariants
Order: | $80=2^{4} \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 80.34 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 2D | 2E | 4A1 | 4A-1 | 4B1 | 4B-1 | 5A | 10A | 10B1 | 10B3 | ||
Size | 1 | 1 | 2 | 5 | 5 | 10 | 10 | 10 | 10 | 10 | 4 | 4 | 4 | 4 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 2D | 2D | 2C | 2C | 5A | 5A | 5A | 5A | |
5 P | 1A | 2A | 2B | 2C | 2D | 2E | 4B-1 | 4B1 | 4A-1 | 4A1 | 1A | 2A | 2B | 2B | |
Type | |||||||||||||||
80.34.1a | R | ||||||||||||||
80.34.1b | R | ||||||||||||||
80.34.1c | R | ||||||||||||||
80.34.1d | R | ||||||||||||||
80.34.1e1 | C | ||||||||||||||
80.34.1e2 | C | ||||||||||||||
80.34.1f1 | C | ||||||||||||||
80.34.1f2 | C | ||||||||||||||
80.34.2a | R | ||||||||||||||
80.34.2b | R | ||||||||||||||
80.34.4a | R | ||||||||||||||
80.34.4b | R | ||||||||||||||
80.34.4c1 | R | ||||||||||||||
80.34.4c2 | R |
magma: CharacterTable(G);