Show commands:
Magma
magma: G := TransitiveGroup(20, 26);
Group action invariants
Degree $n$: | $20$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $26$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_5:F_5$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $5$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,15,20,10)(2,12,19,8)(3,14,18,6)(4,11,17,9)(5,13,16,7), (1,19,5,20,4,16,3,17,2,18)(6,11,9,13,7,15,10,12,8,14) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ $10$: $D_{5}$ $20$: $F_5$, 20T2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 5: None
Degree 10: None
Low degree siblings
25T11Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{20}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{10}$ | $5$ | $2$ | $10$ | $( 1,20)( 2,19)( 3,18)( 4,17)( 5,16)( 6,14)( 7,13)( 8,12)( 9,11)(10,15)$ |
4A1 | $4^{5}$ | $25$ | $4$ | $15$ | $( 1,15,20,10)( 2,12,19, 8)( 3,14,18, 6)( 4,11,17, 9)( 5,13,16, 7)$ |
4A-1 | $4^{5}$ | $25$ | $4$ | $15$ | $( 1,10,20,15)( 2, 8,19,12)( 3, 6,18,14)( 4, 9,17,11)( 5, 7,16,13)$ |
5A1 | $5^{4}$ | $2$ | $5$ | $16$ | $( 1, 4, 2, 5, 3)( 6, 7, 8, 9,10)(11,15,14,13,12)(16,18,20,17,19)$ |
5A2 | $5^{4}$ | $2$ | $5$ | $16$ | $( 1, 5, 4, 3, 2)( 6, 9, 7,10, 8)(11,13,15,12,14)(16,17,18,19,20)$ |
5B | $5^{3},1^{5}$ | $4$ | $5$ | $12$ | $( 1, 5, 4, 3, 2)(11,12,13,14,15)(16,18,20,17,19)$ |
5C1 | $5^{3},1^{5}$ | $4$ | $5$ | $12$ | $( 1, 2, 3, 4, 5)( 6,10, 9, 8, 7)(11,13,15,12,14)$ |
5C-1 | $5^{4}$ | $4$ | $5$ | $16$ | $( 1, 4, 2, 5, 3)( 6, 9, 7,10, 8)(11,14,12,15,13)(16,19,17,20,18)$ |
5C2 | $5^{3},1^{5}$ | $4$ | $5$ | $12$ | $( 6, 8,10, 7, 9)(11,15,14,13,12)(16,17,18,19,20)$ |
5C-2 | $5^{3},1^{5}$ | $4$ | $5$ | $12$ | $( 1, 3, 5, 2, 4)( 6, 7, 8, 9,10)(16,20,19,18,17)$ |
10A1 | $10^{2}$ | $10$ | $10$ | $18$ | $( 1,16, 4,18, 2,20, 5,17, 3,19)( 6,11, 7,15, 8,14, 9,13,10,12)$ |
10A3 | $10^{2}$ | $10$ | $10$ | $18$ | $( 1,17, 2,16, 3,20, 4,19, 5,18)( 6,13, 8,11,10,14, 7,12, 9,15)$ |
Malle's constant $a(G)$: $1/10$
magma: ConjugacyClasses(G);
Group invariants
Order: | $100=2^{2} \cdot 5^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 100.10 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 4A1 | 4A-1 | 5A1 | 5A2 | 5B | 5C1 | 5C-1 | 5C2 | 5C-2 | 10A1 | 10A3 | ||
Size | 1 | 5 | 25 | 25 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 10 | 10 | |
2 P | 1A | 1A | 2A | 2A | 5A2 | 5A1 | 5C-2 | 5C1 | 5B | 5C-1 | 5C2 | 5A1 | 5A2 | |
5 P | 1A | 2A | 4A1 | 4A-1 | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | |
Type | ||||||||||||||
100.10.1a | R | |||||||||||||
100.10.1b | R | |||||||||||||
100.10.1c1 | C | |||||||||||||
100.10.1c2 | C | |||||||||||||
100.10.2a1 | R | |||||||||||||
100.10.2a2 | R | |||||||||||||
100.10.2b1 | S | |||||||||||||
100.10.2b2 | S | |||||||||||||
100.10.4a | R | |||||||||||||
100.10.4b1 | C | |||||||||||||
100.10.4b2 | C | |||||||||||||
100.10.4b3 | C | |||||||||||||
100.10.4b4 | C |
magma: CharacterTable(G);