Show commands:
Magma
magma: G := TransitiveGroup(20, 362);
Group action invariants
Degree $n$: | $20$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $362$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $\PGL(2,19)$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,20,7,8,16,15,2,13,17,5,18,4,9,3,10,14,6,12,11,19), (1,18,8,7,16,14,2,17,13)(4,10,5,11,15,9,20,6,19) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 5: None
Degree 10: None
Low degree siblings
40T5409Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{20}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{10}$ | $171$ | $2$ | $10$ | $( 1,12)( 2, 5)( 3, 8)( 4,18)( 6,14)( 7,11)( 9,10)(13,20)(15,19)(16,17)$ |
2B | $2^{9},1^{2}$ | $190$ | $2$ | $9$ | $( 1, 6)( 2,15)( 3,13)( 5,18)( 7,17)( 8,11)( 9,12)(10,20)(14,19)$ |
3A | $3^{6},1^{2}$ | $380$ | $3$ | $12$ | $( 1, 8,11)( 2, 7, 9)( 3,13,12)( 4,16,18)( 5,14,17)( 6,19,20)$ |
4A | $4^{5}$ | $342$ | $4$ | $15$ | $( 1,15,12,19)( 2,13, 5,20)( 3, 9, 8,10)( 4,16,18,17)( 6, 7,14,11)$ |
5A1 | $5^{4}$ | $342$ | $5$ | $16$ | $( 1, 4, 9,13,12)( 2,16, 6,15,10)( 3, 8,11,19,18)( 5, 7,17,20,14)$ |
5A2 | $5^{4}$ | $342$ | $5$ | $16$ | $( 1, 9, 3, 2,19)( 4,11, 7,17, 8)( 5,16,18,10,20)( 6,14,15,13,12)$ |
6A | $6^{3},1^{2}$ | $380$ | $6$ | $15$ | $( 1,17, 8, 6, 7,11)( 2, 5,20,15,18,10)( 3,19, 9,13,14,12)$ |
9A1 | $9^{2},1^{2}$ | $380$ | $9$ | $16$ | $( 1,10,15, 3, 9, 6,17, 2,19)( 4,18,11, 5, 8,16,12,14,13)$ |
9A2 | $9^{2},1^{2}$ | $380$ | $9$ | $16$ | $( 1,13,18, 8,12, 2, 7,19,20)( 3, 5,11, 9,15,17,14,10, 6)$ |
9A4 | $9^{2},1^{2}$ | $380$ | $9$ | $16$ | $( 1, 6,10,17,15, 2, 3,19, 9)( 4,16,18,12,11,14, 5,13, 8)$ |
10A1 | $10^{2}$ | $342$ | $10$ | $18$ | $( 1,19, 4,18, 9, 3,13, 8,12,11)( 2,14,16, 5, 6, 7,15,17,10,20)$ |
10A3 | $10^{2}$ | $342$ | $10$ | $18$ | $( 1,18,13,11, 4, 3,12,19, 9, 8)( 2, 5,15,20,16, 7,10,14, 6,17)$ |
18A1 | $18,1^{2}$ | $380$ | $18$ | $17$ | $( 1,14, 2,11,13,10, 7, 9,18, 6,19,15, 8, 3,20,17,12, 5)$ |
18A5 | $18,1^{2}$ | $380$ | $18$ | $17$ | $( 1,10,19,17, 2, 9, 8, 5,13, 6,20,14, 7,15,12,11,18, 3)$ |
18A7 | $18,1^{2}$ | $380$ | $18$ | $17$ | $( 1,15,13,17,18,14, 8,10,12, 6, 2, 3, 7, 5,19,11,20, 9)$ |
19A | $19,1$ | $360$ | $19$ | $18$ | $( 1,12, 7,20, 8, 3,14,10,19, 6,13, 4,16,18,11, 2, 9,15, 5)$ |
20A1 | $20$ | $342$ | $20$ | $19$ | $( 1, 6,11, 5,12,16, 8,14,13, 2, 3,20, 9,10,18,17, 4,15,19, 7)$ |
20A3 | $20$ | $342$ | $20$ | $19$ | $( 1, 5, 8, 2, 9,17,19, 6,12,14, 3,10, 4, 7,11,16,13,20,18,15)$ |
20A7 | $20$ | $342$ | $20$ | $19$ | $( 1,14,18, 6,13,17,11, 2, 4, 5, 3,15,12,20,19,16, 9, 7, 8,10)$ |
20A9 | $20$ | $342$ | $20$ | $19$ | $( 1, 2,19,14, 4,16,18, 5, 9, 6, 3, 7,13,15, 8,17,12,10,11,20)$ |
Malle's constant $a(G)$: $1/9$
magma: ConjugacyClasses(G);
Group invariants
Order: | $6840=2^{3} \cdot 3^{2} \cdot 5 \cdot 19$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 6840.b | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 3A | 4A | 5A1 | 5A2 | 6A | 9A1 | 9A2 | 9A4 | 10A1 | 10A3 | 18A1 | 18A5 | 18A7 | 19A | 20A1 | 20A3 | 20A7 | 20A9 | ||
Size | 1 | 171 | 190 | 380 | 342 | 342 | 342 | 380 | 380 | 380 | 380 | 342 | 342 | 380 | 380 | 380 | 360 | 342 | 342 | 342 | 342 | |
2 P | 1A | 1A | 1A | 3A | 2A | 5A2 | 5A1 | 3A | 9A4 | 9A1 | 9A2 | 5A1 | 5A2 | 9A2 | 9A1 | 9A4 | 19A | 10A1 | 10A3 | 10A3 | 10A1 | |
3 P | 1A | 2A | 2B | 1A | 4A | 5A2 | 5A1 | 2B | 3A | 3A | 3A | 10A3 | 10A1 | 6A | 6A | 6A | 19A | 20A3 | 20A9 | 20A1 | 20A7 | |
5 P | 1A | 2A | 2B | 3A | 4A | 1A | 1A | 6A | 9A1 | 9A2 | 9A4 | 2A | 2A | 18A1 | 18A5 | 18A7 | 19A | 4A | 4A | 4A | 4A | |
19 P | 1A | 2A | 2B | 3A | 4A | 5A1 | 5A2 | 6A | 9A2 | 9A4 | 9A1 | 10A1 | 10A3 | 18A7 | 18A1 | 18A5 | 1A | 20A1 | 20A3 | 20A7 | 20A9 | |
Type |
magma: CharacterTable(G);