Show commands:
Magma
magma: G := TransitiveGroup(20, 45);
Group action invariants
Degree $n$: | $20$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $45$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_2^4:D_5$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $4$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,5)(2,6)(3,4)(7,9)(8,10)(11,15)(12,16)(13,14)(17,19)(18,20), (1,19,2,20)(3,17,14,8)(4,18,13,7)(5,16)(6,15)(9,12,10,11) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $10$: $D_{5}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 5: $D_{5}$
Degree 10: $(C_2^4 : C_5) : C_2$, $(C_2^4 : C_5) : C_2$ x 2
Low degree siblings
10T15 x 3, 10T16 x 3, 16T415, 20T38 x 6, 20T39, 20T43 x 3, 20T45 x 2, 32T2132, 40T143 x 3, 40T144 x 3, 40T145 x 6, 40T146Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{20}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8},1^{4}$ | $5$ | $2$ | $8$ | $( 1, 2)( 3,14)( 4,13)( 7,18)( 8,17)( 9,10)(11,12)(19,20)$ |
2B | $2^{8},1^{4}$ | $5$ | $2$ | $8$ | $( 1,11)( 2,12)( 5,15)( 6,16)( 7,18)( 8,17)( 9,20)(10,19)$ |
2C | $2^{8},1^{4}$ | $5$ | $2$ | $8$ | $( 1,11)( 2,12)( 3,13)( 4,14)( 5, 6)( 9,10)(15,16)(19,20)$ |
2D | $2^{10}$ | $20$ | $2$ | $10$ | $( 1,10)( 2, 9)( 3, 8)( 4, 7)( 5, 6)(11,20)(12,19)(13,18)(14,17)(15,16)$ |
4A | $4^{4},2^{2}$ | $20$ | $4$ | $14$ | $( 1,19, 2,20)( 3,17,14, 8)( 4,18,13, 7)( 5,16)( 6,15)( 9,12,10,11)$ |
4B | $4^{4},1^{4}$ | $20$ | $4$ | $12$ | $( 3, 9,13,19)( 4,10,14,20)( 5, 7,16,18)( 6, 8,15,17)$ |
4C | $4^{4},2^{2}$ | $20$ | $4$ | $14$ | $( 1, 3,11,13)( 2, 4,12,14)( 5,20, 6,19)( 7,17)( 8,18)( 9,15,10,16)$ |
5A1 | $5^{4}$ | $32$ | $5$ | $16$ | $( 1, 5, 9,14,18)( 2, 6,10,13,17)( 3, 7,12,16,20)( 4, 8,11,15,19)$ |
5A2 | $5^{4}$ | $32$ | $5$ | $16$ | $( 1, 9,18, 5,14)( 2,10,17, 6,13)( 3,12,20, 7,16)( 4,11,19, 8,15)$ |
Malle's constant $a(G)$: $1/8$
magma: ConjugacyClasses(G);
Group invariants
Order: | $160=2^{5} \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 160.234 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 5A1 | 5A2 | ||
Size | 1 | 5 | 5 | 5 | 20 | 20 | 20 | 20 | 32 | 32 | |
2 P | 1A | 1A | 1A | 1A | 1A | 2A | 2B | 2C | 5A2 | 5A1 | |
5 P | 1A | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 1A | 1A | |
Type | |||||||||||
160.234.1a | R | ||||||||||
160.234.1b | R | ||||||||||
160.234.2a1 | R | ||||||||||
160.234.2a2 | R | ||||||||||
160.234.5a | R | ||||||||||
160.234.5b | R | ||||||||||
160.234.5c | R | ||||||||||
160.234.5d | R | ||||||||||
160.234.5e | R | ||||||||||
160.234.5f | R |
magma: CharacterTable(G);