Show commands:
Magma
magma: G := TransitiveGroup(20, 7);
Group action invariants
Degree $n$: | $20$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $7$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_5:D_4$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,11,2,12)(3,9,4,10)(5,8,6,7)(13,19,14,20)(15,17,16,18), (1,8,13,20,6,12,18,4,10,16)(2,7,14,19,5,11,17,3,9,15) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $8$: $D_{4}$ $10$: $D_{5}$ $20$: $D_{10}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 5: $D_{5}$
Degree 10: $D_{10}$
Low degree siblings
20T11, 40T11Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{20}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{10}$ | $1$ | $2$ | $10$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
2B | $2^{10}$ | $2$ | $2$ | $10$ | $( 1,12)( 2,11)( 3,14)( 4,13)( 5,15)( 6,16)( 7,17)( 8,18)( 9,19)(10,20)$ |
2C | $2^{9},1^{2}$ | $10$ | $2$ | $9$ | $( 1, 2)( 3,19)( 4,20)( 5,18)( 6,17)( 7,15)( 8,16)( 9,13)(10,14)$ |
4A | $4^{5}$ | $10$ | $4$ | $15$ | $( 1,12, 2,11)( 3,10, 4, 9)( 5, 7, 6, 8)(13,20,14,19)(15,18,16,17)$ |
5A1 | $5^{4}$ | $2$ | $5$ | $16$ | $( 1,10,18, 6,13)( 2, 9,17, 5,14)( 3,11,19, 7,15)( 4,12,20, 8,16)$ |
5A2 | $5^{4}$ | $2$ | $5$ | $16$ | $( 1,18,13,10, 6)( 2,17,14, 9, 5)( 3,19,15,11, 7)( 4,20,16,12, 8)$ |
10A1 | $10^{2}$ | $2$ | $10$ | $18$ | $( 1, 5,10,14,18, 2, 6, 9,13,17)( 3, 8,11,16,19, 4, 7,12,15,20)$ |
10A3 | $10^{2}$ | $2$ | $10$ | $18$ | $( 1,14, 6,17,10, 2,13, 5,18, 9)( 3,16, 7,20,11, 4,15, 8,19,12)$ |
10B1 | $10^{2}$ | $2$ | $10$ | $18$ | $( 1,15,10, 3,18,11, 6,19,13, 7)( 2,16, 9, 4,17,12, 5,20,14, 8)$ |
10B-1 | $10^{2}$ | $2$ | $10$ | $18$ | $( 1,19,18,15,13,11,10, 7, 6, 3)( 2,20,17,16,14,12, 9, 8, 5, 4)$ |
10B3 | $10^{2}$ | $2$ | $10$ | $18$ | $( 1, 7,13,19, 6,11,18, 3,10,15)( 2, 8,14,20, 5,12,17, 4, 9,16)$ |
10B-3 | $10^{2}$ | $2$ | $10$ | $18$ | $( 1, 3, 6, 7,10,11,13,15,18,19)( 2, 4, 5, 8, 9,12,14,16,17,20)$ |
Malle's constant $a(G)$: $1/9$
magma: ConjugacyClasses(G);
Group invariants
Order: | $40=2^{3} \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 40.8 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 4A | 5A1 | 5A2 | 10A1 | 10A3 | 10B1 | 10B-1 | 10B3 | 10B-3 | ||
Size | 1 | 1 | 2 | 10 | 10 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
2 P | 1A | 1A | 1A | 1A | 2A | 5A2 | 5A1 | 5A1 | 5A2 | 5A1 | 5A2 | 5A1 | 5A2 | |
5 P | 1A | 2A | 2B | 2C | 4A | 1A | 1A | 2A | 2A | 2B | 2B | 2B | 2B | |
Type | ||||||||||||||
40.8.1a | R | |||||||||||||
40.8.1b | R | |||||||||||||
40.8.1c | R | |||||||||||||
40.8.1d | R | |||||||||||||
40.8.2a | R | |||||||||||||
40.8.2b1 | R | |||||||||||||
40.8.2b2 | R | |||||||||||||
40.8.2c1 | R | |||||||||||||
40.8.2c2 | R | |||||||||||||
40.8.2d1 | C | |||||||||||||
40.8.2d2 | C | |||||||||||||
40.8.2d3 | C | |||||||||||||
40.8.2d4 | C |
magma: CharacterTable(G);