Properties

Label 21T41
21T41 1 8 1->8 10 1->10 2 9 2->9 2->9 3 3->8 3->10 4 11 4->11 14 4->14 5 12 5->12 13 5->13 6 6->12 6->13 7 7->11 7->14 8->4 21 8->21 9->1 16 9->16 10->5 18 10->18 11->2 20 11->20 12->6 15 12->15 13->3 17 13->17 19 14->19 15->7 15->18 16->3 17->6 17->21 18->2 18->19 19->5 19->17 20->1 20->15 21->4 21->20
Degree 2121
Order 61746174
Cyclic no
Abelian no
Solvable yes
Primitive no
pp-group no
Group: C73:(C3×S3)C_7^3:(C_3\times S_3)

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(21, 41);
 

Group invariants

Abstract group:  C73:(C3×S3)C_7^3:(C_3\times S_3)
Copy content magma:IdentifyGroup(G);
 
Order:  6174=232736174=2 \cdot 3^{2} \cdot 7^{3}
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree nn:  2121
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number tt:  4141
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  11
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
#Aut(F/K)\card{\Aut(F/K)}:  11
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,8,4,11,2,9)(3,10,5,12,6,13)(7,14)(15,18,19,17,21,20)(1,8,4,11,2,9)(3,10,5,12,6,13)(7,14)(15,18,19,17,21,20), (1,10,18,2,9,16,3,8,21,4,14,19,5,13,17,6,12,15,7,11,20)(1,10,18,2,9,16,3,8,21,4,14,19,5,13,17,6,12,15,7,11,20)
Copy content magma:Generators(G);
 

Low degree resolvents

#(G/N)\card{(G/N)}Galois groups for stem field(s)
22C2C_2
33C3C_3
66S3S_3, C6C_6
1818S3×C3S_3\times C_3
4242F7F_7
12612621T10
88288214T26

Resolvents shown for degrees 47\leq 47

Subfields

Degree 3: S3S_3

Degree 7: None

Low degree siblings

21T41 x 5, 42T465 x 6, 42T472 x 3, 42T475 x 2

Siblings are shown with degree 47\leq 47

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A 1211^{21} 11 11 00 ()()
2A 210,12^{10},1 147147 22 1010 (2,7)(3,6)(4,5)(8,20)(9,19)(10,18)(11,17)(12,16)(13,15)(14,21)( 2, 7)( 3, 6)( 4, 5)( 8,20)( 9,19)(10,18)(11,17)(12,16)(13,15)(14,21)
3A 373^{7} 9898 33 1414 (1,12,16)(2,8,19)(3,11,15)(4,14,18)(5,10,21)(6,13,17)(7,9,20)( 1,12,16)( 2, 8,19)( 3,11,15)( 4,14,18)( 5,10,21)( 6,13,17)( 7, 9,20)
3B1 373^{7} 9898 33 1414 (1,17,14)(2,15,13)(3,20,12)(4,18,11)(5,16,10)(6,21,9)(7,19,8)( 1,17,14)( 2,15,13)( 3,20,12)( 4,18,11)( 5,16,10)( 6,21, 9)( 7,19, 8)
3B-1 373^{7} 9898 33 1414 (1,14,17)(2,13,15)(3,12,20)(4,11,18)(5,10,16)(6,9,21)(7,8,19)( 1,14,17)( 2,13,15)( 3,12,20)( 4,11,18)( 5,10,16)( 6, 9,21)( 7, 8,19)
3C1 36,133^{6},1^{3} 343343 33 1212 (1,5,7)(3,6,4)(8,12,14)(10,13,11)(15,20,19)(16,17,21)( 1, 5, 7)( 3, 6, 4)( 8,12,14)(10,13,11)(15,20,19)(16,17,21)
3C-1 36,133^{6},1^{3} 343343 33 1212 (1,7,5)(3,4,6)(8,14,12)(10,11,13)(15,19,20)(16,21,17)( 1, 7, 5)( 3, 4, 6)( 8,14,12)(10,11,13)(15,19,20)(16,21,17)
6A1 63,2,16^{3},2,1 10291029 66 1616 (1,4,5,3,7,6)(8,20,12,19,14,15)(9,18)(10,16,13,17,11,21)( 1, 4, 5, 3, 7, 6)( 8,20,12,19,14,15)( 9,18)(10,16,13,17,11,21)
6A-1 63,2,16^{3},2,1 10291029 66 1616 (1,6,7,3,5,4)(8,15,14,19,12,20)(9,18)(10,21,11,17,13,16)( 1, 6, 7, 3, 5, 4)( 8,15,14,19,12,20)( 9,18)(10,21,11,17,13,16)
7A 737^{3} 66 77 1818 (1,2,3,4,5,6,7)(8,11,14,10,13,9,12)(15,18,21,17,20,16,19)( 1, 2, 3, 4, 5, 6, 7)( 8,11,14,10,13, 9,12)(15,18,21,17,20,16,19)
7B1 737^{3} 66 77 1818 (1,2,3,4,5,6,7)(8,14,13,12,11,10,9)(15,20,18,16,21,19,17)( 1, 2, 3, 4, 5, 6, 7)( 8,14,13,12,11,10, 9)(15,20,18,16,21,19,17)
7B-1 737^{3} 66 77 1818 (1,7,6,5,4,3,2)(8,9,10,11,12,13,14)(15,17,19,21,16,18,20)( 1, 7, 6, 5, 4, 3, 2)( 8, 9,10,11,12,13,14)(15,17,19,21,16,18,20)
7C1 72,177^{2},1^{7} 99 77 1212 (8,9,10,11,12,13,14)(15,21,20,19,18,17,16)( 8, 9,10,11,12,13,14)(15,21,20,19,18,17,16)
7C-1 72,177^{2},1^{7} 99 77 1212 (8,14,13,12,11,10,9)(15,16,17,18,19,20,21)( 8,14,13,12,11,10, 9)(15,16,17,18,19,20,21)
7D 737^{3} 1818 77 1818 (1,5,2,6,3,7,4)(8,12,9,13,10,14,11)(15,20,18,16,21,19,17)( 1, 5, 2, 6, 3, 7, 4)( 8,12, 9,13,10,14,11)(15,20,18,16,21,19,17)
7E 737^{3} 1818 77 1818 (1,4,7,3,6,2,5)(8,9,10,11,12,13,14)(15,17,19,21,16,18,20)( 1, 4, 7, 3, 6, 2, 5)( 8, 9,10,11,12,13,14)(15,17,19,21,16,18,20)
7F 7,1147,1^{14} 1818 77 66 (8,13,11,9,14,12,10)( 8,13,11, 9,14,12,10)
7G 737^{3} 1818 77 1818 (1,3,5,7,2,4,6)(8,13,11,9,14,12,10)(15,21,20,19,18,17,16)( 1, 3, 5, 7, 2, 4, 6)( 8,13,11, 9,14,12,10)(15,21,20,19,18,17,16)
7H 737^{3} 1818 77 1818 (1,5,2,6,3,7,4)(8,10,12,14,9,11,13)(15,20,18,16,21,19,17)( 1, 5, 2, 6, 3, 7, 4)( 8,10,12,14, 9,11,13)(15,20,18,16,21,19,17)
7I 737^{3} 1818 77 1818 (1,2,3,4,5,6,7)(8,10,12,14,9,11,13)(15,18,21,17,20,16,19)( 1, 2, 3, 4, 5, 6, 7)( 8,10,12,14, 9,11,13)(15,18,21,17,20,16,19)
7J 72,177^{2},1^{7} 1818 77 1212 (1,3,5,7,2,4,6)(15,21,20,19,18,17,16)( 1, 3, 5, 7, 2, 4, 6)(15,21,20,19,18,17,16)
7K1 72,177^{2},1^{7} 1818 77 1212 (1,6,4,2,7,5,3)(15,19,16,20,17,21,18)( 1, 6, 4, 2, 7, 5, 3)(15,19,16,20,17,21,18)
7K-1 72,177^{2},1^{7} 1818 77 1212 (1,2,3,4,5,6,7)(15,20,18,16,21,19,17)( 1, 2, 3, 4, 5, 6, 7)(15,20,18,16,21,19,17)
7L1 737^{3} 1818 77 1818 (1,5,2,6,3,7,4)(8,11,14,10,13,9,12)(15,19,16,20,17,21,18)( 1, 5, 2, 6, 3, 7, 4)( 8,11,14,10,13, 9,12)(15,19,16,20,17,21,18)
7L-1 737^{3} 1818 77 1818 (1,3,5,7,2,4,6)(8,11,14,10,13,9,12)(15,16,17,18,19,20,21)( 1, 3, 5, 7, 2, 4, 6)( 8,11,14,10,13, 9,12)(15,16,17,18,19,20,21)
7M1 737^{3} 1818 77 1818 (1,5,2,6,3,7,4)(8,12,9,13,10,14,11)(15,16,17,18,19,20,21)( 1, 5, 2, 6, 3, 7, 4)( 8,12, 9,13,10,14,11)(15,16,17,18,19,20,21)
7M-1 737^{3} 1818 77 1818 (1,4,7,3,6,2,5)(8,14,13,12,11,10,9)(15,19,16,20,17,21,18)( 1, 4, 7, 3, 6, 2, 5)( 8,14,13,12,11,10, 9)(15,19,16,20,17,21,18)
7N1 72,177^{2},1^{7} 1818 77 1212 (1,2,3,4,5,6,7)(15,17,19,21,16,18,20)( 1, 2, 3, 4, 5, 6, 7)(15,17,19,21,16,18,20)
7N-1 72,177^{2},1^{7} 1818 77 1212 (8,11,14,10,13,9,12)(15,17,19,21,16,18,20)( 8,11,14,10,13, 9,12)(15,17,19,21,16,18,20)
7O1 737^{3} 1818 77 1818 (1,3,5,7,2,4,6)(8,9,10,11,12,13,14)(15,20,18,16,21,19,17)( 1, 3, 5, 7, 2, 4, 6)( 8, 9,10,11,12,13,14)(15,20,18,16,21,19,17)
7O-1 737^{3} 1818 77 1818 (1,6,4,2,7,5,3)(8,12,9,13,10,14,11)(15,18,21,17,20,16,19)( 1, 6, 4, 2, 7, 5, 3)( 8,12, 9,13,10,14,11)(15,18,21,17,20,16,19)
14A1 14,23,114,2^{3},1 441441 1414 1616 (2,7)(3,6)(4,5)(8,16,9,15,10,21,11,20,12,19,13,18,14,17)( 2, 7)( 3, 6)( 4, 5)( 8,16, 9,15,10,21,11,20,12,19,13,18,14,17)
14A-1 14,23,114,2^{3},1 441441 1414 1616 (2,7)(3,6)(4,5)(8,17,14,18,13,19,12,20,11,21,10,15,9,16)( 2, 7)( 3, 6)( 4, 5)( 8,17,14,18,13,19,12,20,11,21,10,15, 9,16)
21A1 2121 294294 2121 2020 (1,13,18,2,9,21,3,12,17,4,8,20,5,11,16,6,14,19,7,10,15)( 1,13,18, 2, 9,21, 3,12,17, 4, 8,20, 5,11,16, 6,14,19, 7,10,15)
21A2 2121 294294 2121 2020 (1,18,9,3,17,8,5,16,14,7,15,13,2,21,12,4,20,11,6,19,10)( 1,18, 9, 3,17, 8, 5,16,14, 7,15,13, 2,21,12, 4,20,11, 6,19,10)
21B1 2121 294294 2121 2020 (1,21,11,2,19,10,3,17,9,4,15,8,5,20,14,6,18,13,7,16,12)( 1,21,11, 2,19,10, 3,17, 9, 4,15, 8, 5,20,14, 6,18,13, 7,16,12)
21B-1 2121 294294 2121 2020 (1,12,16,7,13,18,6,14,20,5,8,15,4,9,17,3,10,19,2,11,21)( 1,12,16, 7,13,18, 6,14,20, 5, 8,15, 4, 9,17, 3,10,19, 2,11,21)
21B2 2121 294294 2121 2020 (1,11,19,3,9,15,5,14,18,7,12,21,2,10,17,4,8,20,6,13,16)( 1,11,19, 3, 9,15, 5,14,18, 7,12,21, 2,10,17, 4, 8,20, 6,13,16)
21B-2 2121 294294 2121 2020 (1,16,13,6,20,8,4,17,10,2,21,12,7,18,14,5,15,9,3,19,11)( 1,16,13, 6,20, 8, 4,17,10, 2,21,12, 7,18,14, 5,15, 9, 3,19,11)

Malle's constant a(G)a(G):     1/61/6

Copy content magma:ConjugacyClasses(G);
 

Character table

39 x 39 character table

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed