Show commands: Magma
Group invariants
| Abstract group: | $C_7^3:\He_3$ |
| |
| Order: | $9261=3^{3} \cdot 7^{3}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $21$ |
| |
| Transitive number $t$: | $48$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,6,5)(2,3,7)(8,12,13)(9,14,10)$, $(1,15,9,3,20,10,5,18,11,7,16,12,2,21,13,4,19,14,6,17,8)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $3$: $C_3$ x 4 $9$: $C_3^2$ $27$: $C_3^2:C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$
Degree 7: None
Low degree siblings
21T48 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{21}$ | $1$ | $1$ | $0$ | $()$ |
| 3A1 | $3^{7}$ | $147$ | $3$ | $14$ | $( 1,18, 8)( 2,17,10)( 3,16,12)( 4,15,14)( 5,21, 9)( 6,20,11)( 7,19,13)$ |
| 3A-1 | $3^{7}$ | $147$ | $3$ | $14$ | $( 1, 8,18)( 2,10,17)( 3,12,16)( 4,14,15)( 5, 9,21)( 6,11,20)( 7,13,19)$ |
| 3B1 | $3^{7}$ | $147$ | $3$ | $14$ | $( 1,17, 8)( 2,15,10)( 3,20,12)( 4,18,14)( 5,16, 9)( 6,21,11)( 7,19,13)$ |
| 3B-1 | $3^{7}$ | $147$ | $3$ | $14$ | $( 1, 8,17)( 2,10,15)( 3,12,20)( 4,14,18)( 5, 9,16)( 6,11,21)( 7,13,19)$ |
| 3C1 | $3^{7}$ | $147$ | $3$ | $14$ | $( 1,15,11)( 2,21,12)( 3,20,13)( 4,19,14)( 5,18, 8)( 6,17, 9)( 7,16,10)$ |
| 3C-1 | $3^{7}$ | $147$ | $3$ | $14$ | $( 1,11,15)( 2,12,21)( 3,13,20)( 4,14,19)( 5, 8,18)( 6, 9,17)( 7,10,16)$ |
| 3D1 | $3^{4},1^{9}$ | $147$ | $3$ | $8$ | $( 2, 5, 3)( 4, 6, 7)(15,18,17)(16,20,21)$ |
| 3D-1 | $3^{4},1^{9}$ | $147$ | $3$ | $8$ | $( 2, 3, 5)( 4, 7, 6)(15,17,18)(16,21,20)$ |
| 3E1 | $3^{6},1^{3}$ | $343$ | $3$ | $12$ | $( 1, 5, 6)( 2, 7, 3)( 8, 9,11)(10,13,12)(15,21,19)(17,18,20)$ |
| 3E-1 | $3^{6},1^{3}$ | $343$ | $3$ | $12$ | $( 1, 6, 5)( 2, 3, 7)( 8,11, 9)(10,12,13)(15,19,21)(17,20,18)$ |
| 7A1 | $7^{3}$ | $9$ | $7$ | $18$ | $( 1, 5, 2, 6, 3, 7, 4)( 8, 9,10,11,12,13,14)(15,18,21,17,20,16,19)$ |
| 7A-1 | $7^{3}$ | $9$ | $7$ | $18$ | $( 1, 4, 7, 3, 6, 2, 5)( 8,14,13,12,11,10, 9)(15,19,16,20,17,21,18)$ |
| 7B1 | $7^{3}$ | $9$ | $7$ | $18$ | $( 1, 3, 5, 7, 2, 4, 6)( 8,12, 9,13,10,14,11)(15,18,21,17,20,16,19)$ |
| 7B-1 | $7^{3}$ | $9$ | $7$ | $18$ | $( 1, 6, 4, 2, 7, 5, 3)( 8,11,14,10,13, 9,12)(15,19,16,20,17,21,18)$ |
| 7C1 | $7^{3}$ | $9$ | $7$ | $18$ | $( 1, 4, 7, 3, 6, 2, 5)( 8,11,14,10,13, 9,12)(15,19,16,20,17,21,18)$ |
| 7C-1 | $7^{3}$ | $9$ | $7$ | $18$ | $( 1, 5, 2, 6, 3, 7, 4)( 8,12, 9,13,10,14,11)(15,18,21,17,20,16,19)$ |
| 7D1 | $7,1^{14}$ | $9$ | $7$ | $6$ | $( 8,12, 9,13,10,14,11)$ |
| 7D-1 | $7,1^{14}$ | $9$ | $7$ | $6$ | $( 8,11,14,10,13, 9,12)$ |
| 7E1 | $7^{2},1^{7}$ | $27$ | $7$ | $12$ | $( 1, 7, 6, 5, 4, 3, 2)( 8,13,11, 9,14,12,10)$ |
| 7E-1 | $7^{2},1^{7}$ | $27$ | $7$ | $12$ | $( 1, 5, 2, 6, 3, 7, 4)(15,21,20,19,18,17,16)$ |
| 7F1 | $7^{2},1^{7}$ | $27$ | $7$ | $12$ | $( 1, 7, 6, 5, 4, 3, 2)(15,21,20,19,18,17,16)$ |
| 7F-1 | $7^{2},1^{7}$ | $27$ | $7$ | $12$ | $( 8,13,11, 9,14,12,10)(15,21,20,19,18,17,16)$ |
| 7G1 | $7^{3}$ | $27$ | $7$ | $18$ | $( 1, 7, 6, 5, 4, 3, 2)( 8,13,11, 9,14,12,10)(15,21,20,19,18,17,16)$ |
| 7G-1 | $7^{3}$ | $27$ | $7$ | $18$ | $( 1, 5, 2, 6, 3, 7, 4)( 8,11,14,10,13, 9,12)(15,21,20,19,18,17,16)$ |
| 7H1 | $7^{3}$ | $27$ | $7$ | $18$ | $( 1, 6, 4, 2, 7, 5, 3)( 8,13,11, 9,14,12,10)(15,21,20,19,18,17,16)$ |
| 7H-1 | $7^{3}$ | $27$ | $7$ | $18$ | $( 1, 3, 5, 7, 2, 4, 6)( 8,13,11, 9,14,12,10)(15,21,20,19,18,17,16)$ |
| 7I1 | $7^{3}$ | $27$ | $7$ | $18$ | $( 1, 5, 2, 6, 3, 7, 4)( 8,13,11, 9,14,12,10)(15,21,20,19,18,17,16)$ |
| 7I-1 | $7^{3}$ | $27$ | $7$ | $18$ | $( 1, 6, 4, 2, 7, 5, 3)( 8,11,14,10,13, 9,12)(15,21,20,19,18,17,16)$ |
| 21A1 | $21$ | $441$ | $21$ | $20$ | $( 1,19,11, 5,15,12, 2,18,13, 6,21,14, 3,17, 8, 7,20, 9, 4,16,10)$ |
| 21A-1 | $21$ | $441$ | $21$ | $20$ | $( 1,10,16, 4, 9,20, 7, 8,17, 3,14,21, 6,13,18, 2,12,15, 5,11,19)$ |
| 21A2 | $21$ | $441$ | $21$ | $20$ | $( 1,11,15, 2,13,21, 3, 8,20, 4,10,19, 5,12,18, 6,14,17, 7, 9,16)$ |
| 21A-2 | $21$ | $441$ | $21$ | $20$ | $( 1,16, 9, 7,17,14, 6,18,12, 5,19,10, 4,20, 8, 3,21,13, 2,15,11)$ |
| 21B1 | $21$ | $441$ | $21$ | $20$ | $( 1,18,13, 3,21,10, 5,17,14, 7,20,11, 2,16, 8, 4,19,12, 6,15, 9)$ |
| 21B-1 | $21$ | $441$ | $21$ | $20$ | $( 1, 9,15, 6,12,19, 4, 8,16, 2,11,20, 7,14,17, 5,10,21, 3,13,18)$ |
| 21B2 | $21$ | $441$ | $21$ | $20$ | $( 1,13,21, 5,14,20, 2, 8,19, 6, 9,18, 3,10,17, 7,11,16, 4,12,15)$ |
| 21B-2 | $21$ | $441$ | $21$ | $20$ | $( 1,15,12, 4,16,11, 7,17,10, 3,18, 9, 6,19, 8, 2,20,14, 5,21,13)$ |
| 21C1 | $21$ | $441$ | $21$ | $20$ | $( 1,21,13, 4,18, 9, 7,15,12, 3,19, 8, 6,16,11, 2,20,14, 5,17,10)$ |
| 21C-1 | $21$ | $441$ | $21$ | $20$ | $( 1,10,17, 5,14,20, 2,11,16, 6, 8,19, 3,12,15, 7, 9,18, 4,13,21)$ |
| 21C2 | $21$ | $441$ | $21$ | $20$ | $( 1,13,18, 7,12,19, 6,11,20, 5,10,21, 4, 9,15, 3, 8,16, 2,14,17)$ |
| 21C-2 | $21$ | $441$ | $21$ | $20$ | $( 1,17,14, 2,16, 8, 3,15, 9, 4,21,10, 5,20,11, 6,19,12, 7,18,13)$ |
| 21D1 | $7,3^{4},1^{2}$ | $441$ | $21$ | $14$ | $( 2, 5, 3)( 4, 6, 7)( 8,14,13,12,11,10, 9)(15,18,17)(16,20,21)$ |
| 21D-1 | $7,3^{4},1^{2}$ | $441$ | $21$ | $14$ | $( 2, 3, 5)( 4, 7, 6)( 8, 9,10,11,12,13,14)(15,17,18)(16,21,20)$ |
| 21D2 | $7,3^{4},1^{2}$ | $441$ | $21$ | $14$ | $( 2, 3, 5)( 4, 7, 6)( 8,13,11, 9,14,12,10)(15,17,18)(16,21,20)$ |
| 21D-2 | $7,3^{4},1^{2}$ | $441$ | $21$ | $14$ | $( 2, 5, 3)( 4, 6, 7)( 8,10,12,14, 9,11,13)(15,18,17)(16,20,21)$ |
Malle's constant $a(G)$: $1/6$
Character table
45 x 45 character table
Regular extensions
Data not computed