Show commands:
Magma
magma: G := TransitiveGroup(21, 48);
Group invariants
Abstract group: | $C_7^3:\He_3$ | magma: IdentifyGroup(G);
| |
Order: | $9261=3^{3} \cdot 7^{3}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $21$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $48$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,6,5)(2,3,7)(8,12,13)(9,14,10)$, $(1,15,9,3,20,10,5,18,11,7,16,12,2,21,13,4,19,14,6,17,8)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $3$: $C_3$ x 4 $9$: $C_3^2$ $27$: $C_3^2:C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$
Degree 7: None
Low degree siblings
21T48 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{21}$ | $1$ | $1$ | $0$ | $()$ |
3A1 | $3^{7}$ | $147$ | $3$ | $14$ | $( 1,12,18)( 2,13,17)( 3,14,16)( 4, 8,15)( 5, 9,21)( 6,10,20)( 7,11,19)$ |
3A-1 | $3^{7}$ | $147$ | $3$ | $14$ | $( 1,10,20)( 2,12,19)( 3,14,18)( 4, 9,17)( 5,11,16)( 6,13,15)( 7, 8,21)$ |
3B1 | $3^{7}$ | $147$ | $3$ | $14$ | $( 1,15, 9)( 2,21,13)( 3,20,10)( 4,19,14)( 5,18,11)( 6,17, 8)( 7,16,12)$ |
3B-1 | $3^{7}$ | $147$ | $3$ | $14$ | $( 1,20, 8)( 2,18, 9)( 3,16,10)( 4,21,11)( 5,19,12)( 6,17,13)( 7,15,14)$ |
3C1 | $3^{4},1^{9}$ | $147$ | $3$ | $8$ | $( 1, 3, 4)( 2, 7, 6)( 8,13, 9)(11,12,14)$ |
3C-1 | $3^{7}$ | $147$ | $3$ | $14$ | $( 1,19,13)( 2,15, 8)( 3,18,10)( 4,21,12)( 5,17,14)( 6,20, 9)( 7,16,11)$ |
3D1 | $3^{4},1^{9}$ | $147$ | $3$ | $8$ | $( 1, 4, 3)( 2, 6, 7)( 8, 9,13)(11,14,12)$ |
3D-1 | $3^{7}$ | $147$ | $3$ | $14$ | $( 1, 9,15)( 2,13,21)( 3,10,20)( 4,14,19)( 5,11,18)( 6, 8,17)( 7,12,16)$ |
3E1 | $3^{6},1^{3}$ | $343$ | $3$ | $12$ | $( 1, 5, 6)( 2, 7, 3)( 8,11,10)( 9,13,14)(15,19,20)(16,21,17)$ |
3E-1 | $3^{6},1^{3}$ | $343$ | $3$ | $12$ | $( 1, 6, 5)( 2, 3, 7)( 8,10,11)( 9,14,13)(15,20,19)(16,17,21)$ |
7A1 | $7^{3}$ | $9$ | $7$ | $18$ | $( 1, 7, 6, 5, 4, 3, 2)( 8,13,11, 9,14,12,10)(15,17,19,21,16,18,20)$ |
7A-1 | $7^{3}$ | $9$ | $7$ | $18$ | $( 1, 5, 2, 6, 3, 7, 4)( 8, 9,10,11,12,13,14)(15,20,18,16,21,19,17)$ |
7B1 | $7^{3}$ | $9$ | $7$ | $18$ | $( 1, 7, 6, 5, 4, 3, 2)( 8,13,11, 9,14,12,10)(15,16,17,18,19,20,21)$ |
7B-1 | $7^{3}$ | $9$ | $7$ | $18$ | $( 1, 7, 6, 5, 4, 3, 2)( 8,13,11, 9,14,12,10)(15,19,16,20,17,21,18)$ |
7C1 | $7^{3}$ | $9$ | $7$ | $18$ | $( 1, 5, 2, 6, 3, 7, 4)( 8, 9,10,11,12,13,14)(15,18,21,17,20,16,19)$ |
7C-1 | $7^{3}$ | $9$ | $7$ | $18$ | $( 1, 5, 2, 6, 3, 7, 4)( 8, 9,10,11,12,13,14)(15,21,20,19,18,17,16)$ |
7D1 | $7,1^{14}$ | $9$ | $7$ | $6$ | $(15,21,20,19,18,17,16)$ |
7D-1 | $7,1^{14}$ | $9$ | $7$ | $6$ | $(15,19,16,20,17,21,18)$ |
7E1 | $7^{3}$ | $27$ | $7$ | $18$ | $( 1, 7, 6, 5, 4, 3, 2)( 8,13,11, 9,14,12,10)(15,20,18,16,21,19,17)$ |
7E-1 | $7^{3}$ | $27$ | $7$ | $18$ | $( 1, 7, 6, 5, 4, 3, 2)( 8,13,11, 9,14,12,10)(15,18,21,17,20,16,19)$ |
7F1 | $7^{2},1^{7}$ | $27$ | $7$ | $12$ | $( 8,13,11, 9,14,12,10)(15,21,20,19,18,17,16)$ |
7F-1 | $7^{3}$ | $27$ | $7$ | $18$ | $( 1, 7, 6, 5, 4, 3, 2)( 8, 9,10,11,12,13,14)(15,20,18,16,21,19,17)$ |
7G1 | $7^{2},1^{7}$ | $27$ | $7$ | $12$ | $( 8,13,11, 9,14,12,10)(15,19,16,20,17,21,18)$ |
7G-1 | $7^{2},1^{7}$ | $27$ | $7$ | $12$ | $( 8, 9,10,11,12,13,14)(15,21,20,19,18,17,16)$ |
7H1 | $7^{2},1^{7}$ | $27$ | $7$ | $12$ | $( 8, 9,10,11,12,13,14)(15,19,16,20,17,21,18)$ |
7H-1 | $7^{3}$ | $27$ | $7$ | $18$ | $( 1, 7, 6, 5, 4, 3, 2)( 8,13,11, 9,14,12,10)(15,21,20,19,18,17,16)$ |
7I1 | $7^{3}$ | $27$ | $7$ | $18$ | $( 1, 7, 6, 5, 4, 3, 2)( 8, 9,10,11,12,13,14)(15,21,20,19,18,17,16)$ |
7I-1 | $7^{3}$ | $27$ | $7$ | $18$ | $( 1, 7, 6, 5, 4, 3, 2)( 8, 9,10,11,12,13,14)(15,18,21,17,20,16,19)$ |
21A1 | $21$ | $441$ | $21$ | $20$ | $( 1,19,12, 5,18, 9, 2,17,13, 6,16,10, 3,15,14, 7,21,11, 4,20, 8)$ |
21A-1 | $21$ | $441$ | $21$ | $20$ | $( 1,12,16, 7, 8,17, 6,11,18, 5,14,19, 4,10,20, 3,13,21, 2, 9,15)$ |
21A2 | $21$ | $441$ | $21$ | $20$ | $( 1, 8,21, 7,13,15, 6,11,16, 5, 9,17, 4,14,18, 3,12,19, 2,10,20)$ |
21A-2 | $21$ | $441$ | $21$ | $20$ | $( 1,11,16, 5,12,19, 2,13,15, 6,14,18, 3, 8,21, 7, 9,17, 4,10,20)$ |
21B1 | $21$ | $441$ | $21$ | $20$ | $( 1,18,11, 5,21,13, 2,17, 8, 6,20,10, 3,16,12, 7,19,14, 4,15, 9)$ |
21B-1 | $7,3^{4},1^{2}$ | $441$ | $21$ | $14$ | $( 1, 4, 3)( 2, 6, 7)( 8, 9,13)(11,14,12)(15,19,16,20,17,21,18)$ |
21B2 | $21$ | $441$ | $21$ | $20$ | $( 1,11,19, 7,10,20, 6, 9,21, 5, 8,15, 4,14,16, 3,13,17, 2,12,18)$ |
21B-2 | $21$ | $441$ | $21$ | $20$ | $( 1,16,12, 7,17, 8, 6,18,11, 5,19,14, 4,20,10, 3,21,13, 2,15, 9)$ |
21C1 | $21$ | $441$ | $21$ | $20$ | $( 1,21,11, 4,15,14, 7,16,10, 3,17,13, 6,18, 9, 2,19,12, 5,20, 8)$ |
21C-1 | $7,3^{4},1^{2}$ | $441$ | $21$ | $14$ | $( 1, 4, 3)( 2, 6, 7)( 8, 9,13)(11,14,12)(15,18,21,17,20,16,19)$ |
21C2 | $21$ | $441$ | $21$ | $20$ | $( 1,14,16, 3, 9,21, 5,11,19, 7,13,17, 2, 8,15, 4,10,20, 6,12,18)$ |
21C-2 | $21$ | $441$ | $21$ | $20$ | $( 1,20, 9, 6,21,12, 4,15, 8, 2,16,11, 7,17,14, 5,18,10, 3,19,13)$ |
21D1 | $21$ | $441$ | $21$ | $20$ | $( 1,17,14, 5,15, 8, 2,20, 9, 6,18,10, 3,16,11, 7,21,12, 4,19,13)$ |
21D-1 | $21$ | $441$ | $21$ | $20$ | $( 1,11,18, 5,13,21, 2, 8,17, 6,10,20, 3,12,16, 7,14,19, 4, 9,15)$ |
21D2 | $7,3^{4},1^{2}$ | $441$ | $21$ | $14$ | $( 1, 3, 4)( 2, 7, 6)( 8,13, 9)(11,12,14)(15,17,19,21,16,18,20)$ |
21D-2 | $7,3^{4},1^{2}$ | $441$ | $21$ | $14$ | $( 1, 3, 4)( 2, 7, 6)( 8,13, 9)(11,12,14)(15,21,20,19,18,17,16)$ |
Malle's constant $a(G)$: $1/6$
magma: ConjugacyClasses(G);
Character table
45 x 45 character tablemagma: CharacterTable(G);
Regular extensions
Data not computed