Show commands:
Magma
magma: G := TransitiveGroup(25, 1);
Group action invariants
Degree $n$: | $25$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $1$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_{25}$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $25$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,10,14,16,25,4,8,12,19,23,2,6,15,17,21,5,9,13,20,24,3,7,11,18,22) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $5$: $C_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: $C_5$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{25}$ | $1$ | $1$ | $0$ | $()$ |
5A1 | $5^{5}$ | $1$ | $5$ | $20$ | $( 1, 4, 2, 5, 3)( 6, 9, 7,10, 8)(11,14,12,15,13)(16,19,17,20,18)(21,24,22,25,23)$ |
5A-1 | $5^{5}$ | $1$ | $5$ | $20$ | $( 1, 5, 4, 3, 2)( 6,10, 9, 8, 7)(11,15,14,13,12)(16,20,19,18,17)(21,25,24,23,22)$ |
5A2 | $5^{5}$ | $1$ | $5$ | $20$ | $( 1, 3, 5, 2, 4)( 6, 8,10, 7, 9)(11,13,15,12,14)(16,18,20,17,19)(21,23,25,22,24)$ |
5A-2 | $5^{5}$ | $1$ | $5$ | $20$ | $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)$ |
25A1 | $25$ | $1$ | $25$ | $24$ | $( 1,14,25, 8,19, 2,15,21, 9,20, 3,11,22,10,16, 4,12,23, 6,17, 5,13,24, 7,18)$ |
25A-1 | $25$ | $1$ | $25$ | $24$ | $( 1,16, 8,23,15, 5,20, 7,22,14, 4,19, 6,21,13, 3,18,10,25,12, 2,17, 9,24,11)$ |
25A2 | $25$ | $1$ | $25$ | $24$ | $( 1, 8,15,20,22, 4, 6,13,18,25, 2, 9,11,16,23, 5, 7,14,19,21, 3,10,12,17,24)$ |
25A-2 | $25$ | $1$ | $25$ | $24$ | $( 1, 9,12,18,21, 4, 7,15,16,24, 2,10,13,19,22, 5, 8,11,17,25, 3, 6,14,20,23)$ |
25A3 | $25$ | $1$ | $25$ | $24$ | $( 1,12,21, 7,16, 2,13,22, 8,17, 3,14,23, 9,18, 4,15,24,10,19, 5,11,25, 6,20)$ |
25A-3 | $25$ | $1$ | $25$ | $24$ | $( 1,23,20,14, 6, 3,25,17,11, 8, 5,22,19,13,10, 2,24,16,15, 7, 4,21,18,12, 9)$ |
25A4 | $25$ | $1$ | $25$ | $24$ | $( 1,18, 7,24,13, 5,17, 6,23,12, 4,16,10,22,11, 3,20, 9,21,15, 2,19, 8,25,14)$ |
25A-4 | $25$ | $1$ | $25$ | $24$ | $( 1, 7,13,17,23, 4,10,11,20,21, 2, 8,14,18,24, 5, 6,12,16,22, 3, 9,15,19,25)$ |
25A6 | $25$ | $1$ | $25$ | $24$ | $( 1,13,23,10,20, 2,14,24, 6,16, 3,15,25, 7,17, 4,11,21, 8,18, 5,12,22, 9,19)$ |
25A-6 | $25$ | $1$ | $25$ | $24$ | $( 1,24,17,12,10, 3,21,19,14, 7, 5,23,16,11, 9, 2,25,18,13, 6, 4,22,20,15, 8)$ |
25A7 | $25$ | $1$ | $25$ | $24$ | $( 1,17,10,21,14, 5,16, 9,25,13, 4,20, 8,24,12, 3,19, 7,23,11, 2,18, 6,22,15)$ |
25A-7 | $25$ | $1$ | $25$ | $24$ | $( 1, 6,11,19,24, 4, 9,14,17,22, 2, 7,12,20,25, 5,10,15,18,23, 3, 8,13,16,21)$ |
25A8 | $25$ | $1$ | $25$ | $24$ | $( 1,19, 9,22,12, 5,18, 8,21,11, 4,17, 7,25,15, 3,16, 6,24,14, 2,20,10,23,13)$ |
25A-8 | $25$ | $1$ | $25$ | $24$ | $( 1,10,14,16,25, 4, 8,12,19,23, 2, 6,15,17,21, 5, 9,13,20,24, 3, 7,11,18,22)$ |
25A9 | $25$ | $1$ | $25$ | $24$ | $( 1,11,24, 9,17, 2,12,25,10,18, 3,13,21, 6,19, 4,14,22, 7,20, 5,15,23, 8,16)$ |
25A-9 | $25$ | $1$ | $25$ | $24$ | $( 1,25,19,15, 9, 3,22,16,12, 6, 5,24,18,14, 8, 2,21,20,11,10, 4,23,17,13, 7)$ |
25A11 | $25$ | $1$ | $25$ | $24$ | $( 1,20, 6,25,11, 5,19,10,24,15, 4,18, 9,23,14, 3,17, 8,22,13, 2,16, 7,21,12)$ |
25A-11 | $25$ | $1$ | $25$ | $24$ | $( 1,21,16,13, 8, 3,23,18,15,10, 5,25,20,12, 7, 2,22,17,14, 9, 4,24,19,11, 6)$ |
25A12 | $25$ | $1$ | $25$ | $24$ | $( 1,15,22, 6,18, 2,11,23, 7,19, 3,12,24, 8,20, 4,13,25, 9,16, 5,14,21,10,17)$ |
25A-12 | $25$ | $1$ | $25$ | $24$ | $( 1,22,18,11, 7, 3,24,20,13, 9, 5,21,17,15, 6, 2,23,19,12, 8, 4,25,16,14,10)$ |
Malle's constant $a(G)$: $1/20$
magma: ConjugacyClasses(G);
Group invariants
Order: | $25=5^{2}$ | magma: Order(G);
| |
Cyclic: | yes | magma: IsCyclic(G);
| |
Abelian: | yes | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | $1$ | ||
Label: | 25.1 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 5A1 | 5A-1 | 5A2 | 5A-2 | 25A1 | 25A-1 | 25A2 | 25A-2 | 25A3 | 25A-3 | 25A4 | 25A-4 | 25A6 | 25A-6 | 25A7 | 25A-7 | 25A8 | 25A-8 | 25A9 | 25A-9 | 25A11 | 25A-11 | 25A12 | 25A-12 | ||
Size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
5 P | 1A | 5A2 | 5A1 | 5A-2 | 5A-1 | 25A4 | 25A6 | 25A12 | 25A7 | 25A-11 | 25A-7 | 25A-4 | 25A-8 | 25A9 | 25A-12 | 25A1 | 25A-3 | 25A-9 | 25A2 | 25A-6 | 25A8 | 25A11 | 25A3 | 25A-1 | 25A-2 | |
Type | ||||||||||||||||||||||||||
25.1.1a | R | |||||||||||||||||||||||||
25.1.1b1 | C | |||||||||||||||||||||||||
25.1.1b2 | C | |||||||||||||||||||||||||
25.1.1b3 | C | |||||||||||||||||||||||||
25.1.1b4 | C | |||||||||||||||||||||||||
25.1.1c1 | C | |||||||||||||||||||||||||
25.1.1c2 | C | |||||||||||||||||||||||||
25.1.1c3 | C | |||||||||||||||||||||||||
25.1.1c4 | C | |||||||||||||||||||||||||
25.1.1c5 | C | |||||||||||||||||||||||||
25.1.1c6 | C | |||||||||||||||||||||||||
25.1.1c7 | C | |||||||||||||||||||||||||
25.1.1c8 | C | |||||||||||||||||||||||||
25.1.1c9 | C | |||||||||||||||||||||||||
25.1.1c10 | C | |||||||||||||||||||||||||
25.1.1c11 | C | |||||||||||||||||||||||||
25.1.1c12 | C | |||||||||||||||||||||||||
25.1.1c13 | C | |||||||||||||||||||||||||
25.1.1c14 | C | |||||||||||||||||||||||||
25.1.1c15 | C | |||||||||||||||||||||||||
25.1.1c16 | C | |||||||||||||||||||||||||
25.1.1c17 | C | |||||||||||||||||||||||||
25.1.1c18 | C | |||||||||||||||||||||||||
25.1.1c19 | C | |||||||||||||||||||||||||
25.1.1c20 | C |
magma: CharacterTable(G);