Show commands:
Magma
magma: G := TransitiveGroup(25, 18);
Group action invariants
Degree $n$: | $25$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $18$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $D_5\times F_5$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2)(3,5)(6,17,21,12)(7,16,22,11)(8,20,23,15)(9,19,24,14)(10,18,25,13), (1,3)(4,5)(6,23)(7,22)(8,21)(9,25)(10,24)(11,18)(12,17)(13,16)(14,20)(15,19), (1,7,13,19,25)(2,8,14,20,21)(3,9,15,16,22)(4,10,11,17,23)(5,6,12,18,24) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $C_4\times C_2$ $10$: $D_{5}$ $20$: $F_5$, $D_{10}$ $40$: $F_{5}\times C_2$, 20T6 Resolvents shown for degrees $\leq 47$
Subfields
Low degree siblings
20T51, 40T168Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{25}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{10},1^{5}$ | $5$ | $2$ | $10$ | $( 6,21)( 7,22)( 8,23)( 9,24)(10,25)(11,16)(12,17)(13,18)(14,19)(15,20)$ |
2B | $2^{10},1^{5}$ | $5$ | $2$ | $10$ | $( 2, 5)( 3, 4)( 7,10)( 8, 9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)$ |
2C | $2^{12},1$ | $25$ | $2$ | $12$ | $( 1, 5)( 2, 4)( 6,25)( 7,24)( 8,23)( 9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16)$ |
4A1 | $4^{5},1^{5}$ | $5$ | $4$ | $15$ | $( 6,16,21,11)( 7,17,22,12)( 8,18,23,13)( 9,19,24,14)(10,20,25,15)$ |
4A-1 | $4^{5},1^{5}$ | $5$ | $4$ | $15$ | $( 6,11,21,16)( 7,12,22,17)( 8,13,23,18)( 9,14,24,19)(10,15,25,20)$ |
4B1 | $4^{5},2^{2},1$ | $25$ | $4$ | $17$ | $( 1, 2)( 3, 5)( 6,12,21,17)( 7,11,22,16)( 8,15,23,20)( 9,14,24,19)(10,13,25,18)$ |
4B-1 | $4^{5},2^{2},1$ | $25$ | $4$ | $17$ | $( 1, 3)( 4, 5)( 6,18,21,13)( 7,17,22,12)( 8,16,23,11)( 9,20,24,15)(10,19,25,14)$ |
5A1 | $5^{5}$ | $2$ | $5$ | $20$ | $( 1, 3, 5, 2, 4)( 6, 8,10, 7, 9)(11,13,15,12,14)(16,18,20,17,19)(21,23,25,22,24)$ |
5A2 | $5^{5}$ | $2$ | $5$ | $20$ | $( 1, 5, 4, 3, 2)( 6,10, 9, 8, 7)(11,15,14,13,12)(16,20,19,18,17)(21,25,24,23,22)$ |
5B | $5^{5}$ | $4$ | $5$ | $20$ | $( 1,21,16,11, 6)( 2,22,17,12, 7)( 3,23,18,13, 8)( 4,24,19,14, 9)( 5,25,20,15,10)$ |
5C1 | $5^{5}$ | $8$ | $5$ | $20$ | $( 1,23,20,12, 9)( 2,24,16,13,10)( 3,25,17,14, 6)( 4,21,18,15, 7)( 5,22,19,11, 8)$ |
5C2 | $5^{5}$ | $8$ | $5$ | $20$ | $( 1,25,19,13, 7)( 2,21,20,14, 8)( 3,22,16,15, 9)( 4,23,17,11,10)( 5,24,18,12, 6)$ |
10A1 | $10^{2},5$ | $10$ | $10$ | $22$ | $( 1, 2, 3, 4, 5)( 6,22, 8,24,10,21, 7,23, 9,25)(11,17,13,19,15,16,12,18,14,20)$ |
10A3 | $10^{2},5$ | $10$ | $10$ | $22$ | $( 1, 4, 2, 5, 3)( 6,24, 7,25, 8,21, 9,22,10,23)(11,19,12,20,13,16,14,17,15,18)$ |
10B | $10^{2},5$ | $20$ | $10$ | $22$ | $( 1,21,16,11, 6)( 2,25,17,15, 7, 5,22,20,12,10)( 3,24,18,14, 8, 4,23,19,13, 9)$ |
20A1 | $20,5$ | $10$ | $20$ | $23$ | $( 1, 4, 2, 5, 3)( 6,19,22,15, 8,16,24,12,10,18,21,14, 7,20,23,11, 9,17,25,13)$ |
20A-1 | $20,5$ | $10$ | $20$ | $23$ | $( 1, 4, 2, 5, 3)( 6,14,22,20, 8,11,24,17,10,13,21,19, 7,15,23,16, 9,12,25,18)$ |
20A3 | $20,5$ | $10$ | $20$ | $23$ | $( 1, 5, 4, 3, 2)( 6,15,24,18, 7,11,25,19, 8,12,21,20, 9,13,22,16,10,14,23,17)$ |
20A-3 | $20,5$ | $10$ | $20$ | $23$ | $( 1, 5, 4, 3, 2)( 6,20,24,13, 7,16,25,14, 8,17,21,15, 9,18,22,11,10,19,23,12)$ |
Malle's constant $a(G)$: $1/10$
magma: ConjugacyClasses(G);
Group invariants
Order: | $200=2^{3} \cdot 5^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 200.41 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 4A1 | 4A-1 | 4B1 | 4B-1 | 5A1 | 5A2 | 5B | 5C1 | 5C2 | 10A1 | 10A3 | 10B | 20A1 | 20A-1 | 20A3 | 20A-3 | ||
Size | 1 | 5 | 5 | 25 | 5 | 5 | 25 | 25 | 2 | 2 | 4 | 8 | 8 | 10 | 10 | 20 | 10 | 10 | 10 | 10 | |
2 P | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | 5A2 | 5A1 | 5B | 5C2 | 5C1 | 5A1 | 5A2 | 5B | 10A1 | 10A1 | 10A3 | 10A3 | |
5 P | 1A | 2A | 2B | 2C | 4A1 | 4A-1 | 4B1 | 4B-1 | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2B | 4A1 | 4A-1 | 4A-1 | 4A1 | |
Type | |||||||||||||||||||||
200.41.1a | R | ||||||||||||||||||||
200.41.1b | R | ||||||||||||||||||||
200.41.1c | R | ||||||||||||||||||||
200.41.1d | R | ||||||||||||||||||||
200.41.1e1 | C | ||||||||||||||||||||
200.41.1e2 | C | ||||||||||||||||||||
200.41.1f1 | C | ||||||||||||||||||||
200.41.1f2 | C | ||||||||||||||||||||
200.41.2a1 | R | ||||||||||||||||||||
200.41.2a2 | R | ||||||||||||||||||||
200.41.2b1 | R | ||||||||||||||||||||
200.41.2b2 | R | ||||||||||||||||||||
200.41.2c1 | C | ||||||||||||||||||||
200.41.2c2 | C | ||||||||||||||||||||
200.41.2c3 | C | ||||||||||||||||||||
200.41.2c4 | C | ||||||||||||||||||||
200.41.4a | R | ||||||||||||||||||||
200.41.4b | R | ||||||||||||||||||||
200.41.8a1 | R | ||||||||||||||||||||
200.41.8a2 | R |
magma: CharacterTable(G);