Show commands:
Magma
magma: G := TransitiveGroup(25, 28);
Group action invariants
Degree $n$: | $25$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $28$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_5^2:C_3:C_4$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,10,13,9)(2,17,12,22)(3,4,11,15)(5,23,14,16)(6,25,8,19)(18,24,21,20), (1,7,25,19)(2,22,24,4)(3,12,23,14)(5,17,21,9)(6,10,20,16)(8,15,18,11) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ $6$: $S_3$ $12$: $C_3 : C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: None
Low degree siblings
15T17 x 2, 30T71 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{25}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12},1$ | $25$ | $2$ | $12$ | $( 1, 9)( 2, 8)( 3, 7)( 4, 6)( 5,10)(11,24)(12,23)(13,22)(14,21)(15,25)(16,19)(17,18)$ |
3A | $3^{8},1$ | $50$ | $3$ | $16$ | $( 1,24,20)( 2, 4,14)( 3, 9, 8)( 5,19,21)( 6,18,16)( 7,23,15)(10,13,22)(11,12,17)$ |
4A1 | $4^{6},1$ | $75$ | $4$ | $18$ | $( 1,10,13, 9)( 2,17,12,22)( 3, 4,11,15)( 5,23,14,16)( 6,25, 8,19)(18,24,21,20)$ |
4A-1 | $4^{6},1$ | $75$ | $4$ | $18$ | $( 2,19, 5,13)( 3, 7, 4,25)( 6,11,21,16)( 8,17,24,15)( 9,10,23,22)(12,14,20,18)$ |
5A | $5^{5}$ | $12$ | $5$ | $20$ | $( 1,24,17,15, 8)( 2,25,18,11, 9)( 3,21,19,12,10)( 4,22,20,13, 6)( 5,23,16,14, 7)$ |
5B | $5^{5}$ | $12$ | $5$ | $20$ | $( 1, 6,11,16,21)( 2, 7,12,17,22)( 3, 8,13,18,23)( 4, 9,14,19,24)( 5,10,15,20,25)$ |
6A | $6^{4},1$ | $50$ | $6$ | $20$ | $( 1,11,23,25,15, 3)( 2, 6,17,24,20, 9)( 4,21,10,22, 5,16)( 7,12,18,19,14, 8)$ |
Malle's constant $a(G)$: $1/12$
magma: ConjugacyClasses(G);
Group invariants
Order: | $300=2^{2} \cdot 3 \cdot 5^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 300.23 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A | 4A1 | 4A-1 | 5A | 5B | 6A | ||
Size | 1 | 25 | 50 | 75 | 75 | 12 | 12 | 50 | |
2 P | 1A | 1A | 3A | 2A | 2A | 5A | 5B | 3A | |
3 P | 1A | 2A | 1A | 4A-1 | 4A1 | 5A | 5B | 2A | |
5 P | 1A | 2A | 3A | 4A1 | 4A-1 | 1A | 1A | 6A | |
Type | |||||||||
300.23.1a | R | ||||||||
300.23.1b | R | ||||||||
300.23.1c1 | C | ||||||||
300.23.1c2 | C | ||||||||
300.23.2a | R | ||||||||
300.23.2b | S | ||||||||
300.23.12a | R | ||||||||
300.23.12b | R |
magma: CharacterTable(G);