Properties

Label 25T28
Degree $25$
Order $300$
Cyclic no
Abelian no
Solvable yes
Primitive yes
$p$-group no
Group: $C_5^2:C_3:C_4$

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(25, 28);
 

Group action invariants

Degree $n$:  $25$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $28$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $C_5^2:C_3:C_4$
Parity:  $1$
magma: IsEven(G);
 
Primitive:  yes
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $1$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,10,13,9)(2,17,12,22)(3,4,11,15)(5,23,14,16)(6,25,8,19)(18,24,21,20), (1,7,25,19)(2,22,24,4)(3,12,23,14)(5,17,21,9)(6,10,20,16)(8,15,18,11)
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$4$:  $C_4$
$6$:  $S_3$
$12$:  $C_3 : C_4$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 5: None

Low degree siblings

15T17 x 2, 30T71 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{25}$ $1$ $1$ $0$ $()$
2A $2^{12},1$ $25$ $2$ $12$ $( 1, 9)( 2, 8)( 3, 7)( 4, 6)( 5,10)(11,24)(12,23)(13,22)(14,21)(15,25)(16,19)(17,18)$
3A $3^{8},1$ $50$ $3$ $16$ $( 1,24,20)( 2, 4,14)( 3, 9, 8)( 5,19,21)( 6,18,16)( 7,23,15)(10,13,22)(11,12,17)$
4A1 $4^{6},1$ $75$ $4$ $18$ $( 1,10,13, 9)( 2,17,12,22)( 3, 4,11,15)( 5,23,14,16)( 6,25, 8,19)(18,24,21,20)$
4A-1 $4^{6},1$ $75$ $4$ $18$ $( 2,19, 5,13)( 3, 7, 4,25)( 6,11,21,16)( 8,17,24,15)( 9,10,23,22)(12,14,20,18)$
5A $5^{5}$ $12$ $5$ $20$ $( 1,24,17,15, 8)( 2,25,18,11, 9)( 3,21,19,12,10)( 4,22,20,13, 6)( 5,23,16,14, 7)$
5B $5^{5}$ $12$ $5$ $20$ $( 1, 6,11,16,21)( 2, 7,12,17,22)( 3, 8,13,18,23)( 4, 9,14,19,24)( 5,10,15,20,25)$
6A $6^{4},1$ $50$ $6$ $20$ $( 1,11,23,25,15, 3)( 2, 6,17,24,20, 9)( 4,21,10,22, 5,16)( 7,12,18,19,14, 8)$

Malle's constant $a(G)$:     $1/12$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $300=2^{2} \cdot 3 \cdot 5^{2}$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  300.23
magma: IdentifyGroup(G);
 
Character table:

1A 2A 3A 4A1 4A-1 5A 5B 6A
Size 1 25 50 75 75 12 12 50
2 P 1A 1A 3A 2A 2A 5A 5B 3A
3 P 1A 2A 1A 4A-1 4A1 5A 5B 2A
5 P 1A 2A 3A 4A1 4A-1 1A 1A 6A
Type
300.23.1a R 1 1 1 1 1 1 1 1
300.23.1b R 1 1 1 1 1 1 1 1
300.23.1c1 C 1 1 1 i i 1 1 1
300.23.1c2 C 1 1 1 i i 1 1 1
300.23.2a R 2 2 1 0 0 2 2 1
300.23.2b S 2 2 1 0 0 2 2 1
300.23.12a R 12 0 0 0 0 3 2 0
300.23.12b R 12 0 0 0 0 2 3 0

magma: CharacterTable(G);