Show commands:
Magma
magma: G := TransitiveGroup(25, 4);
Group action invariants
Degree $n$: | $25$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $4$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $D_{25}$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,17)(2,16)(3,20)(4,19)(5,18)(6,12)(7,11)(8,15)(9,14)(10,13)(21,22)(23,25), (1,24)(2,23)(3,22)(4,21)(5,25)(6,17)(7,16)(8,20)(9,19)(10,18)(11,12)(13,15) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $10$: $D_{5}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: $D_{5}$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{25}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12},1$ | $25$ | $2$ | $12$ | $( 2, 5)( 3, 4)( 6,24)( 7,23)( 8,22)( 9,21)(10,25)(11,17)(12,16)(13,20)(14,19)(15,18)$ |
5A1 | $5^{5}$ | $2$ | $5$ | $20$ | $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)$ |
5A2 | $5^{5}$ | $2$ | $5$ | $20$ | $( 1, 3, 5, 2, 4)( 6, 8,10, 7, 9)(11,13,15,12,14)(16,18,20,17,19)(21,23,25,22,24)$ |
25A1 | $25$ | $2$ | $25$ | $24$ | $( 1,20, 8,24,15, 3,17,10,21,12, 5,19, 7,23,14, 2,16, 9,25,11, 4,18, 6,22,13)$ |
25A2 | $25$ | $2$ | $25$ | $24$ | $( 1,19, 6,21,11, 3,16, 8,23,13, 5,18,10,25,15, 2,20, 7,22,12, 4,17, 9,24,14)$ |
25A3 | $25$ | $2$ | $25$ | $24$ | $( 1,18, 9,23,12, 3,20, 6,25,14, 5,17, 8,22,11, 2,19,10,24,13, 4,16, 7,21,15)$ |
25A4 | $25$ | $2$ | $25$ | $24$ | $( 1,22,18,11, 9, 2,23,19,12,10, 3,24,20,13, 6, 4,25,16,14, 7, 5,21,17,15, 8)$ |
25A6 | $25$ | $2$ | $25$ | $24$ | $( 1,25,19,15, 6, 2,21,20,11, 7, 3,22,16,12, 8, 4,23,17,13, 9, 5,24,18,14,10)$ |
25A7 | $25$ | $2$ | $25$ | $24$ | $( 1,16,10,22,14, 3,18, 7,24,11, 5,20, 9,21,13, 2,17, 6,23,15, 4,19, 8,25,12)$ |
25A8 | $25$ | $2$ | $25$ | $24$ | $( 1,23,20,14, 8, 2,24,16,15, 9, 3,25,17,11,10, 4,21,18,12, 6, 5,22,19,13, 7)$ |
25A9 | $25$ | $2$ | $25$ | $24$ | $( 1,17, 7,25,13, 3,19, 9,22,15, 5,16, 6,24,12, 2,18, 8,21,14, 4,20,10,23,11)$ |
25A11 | $25$ | $2$ | $25$ | $24$ | $( 1,21,16,13,10, 2,22,17,14, 6, 3,23,18,15, 7, 4,24,19,11, 8, 5,25,20,12, 9)$ |
25A12 | $25$ | $2$ | $25$ | $24$ | $( 1,24,17,12, 7, 2,25,18,13, 8, 3,21,19,14, 9, 4,22,20,15,10, 5,23,16,11, 6)$ |
Malle's constant $a(G)$: $1/12$
magma: ConjugacyClasses(G);
Group invariants
Order: | $50=2 \cdot 5^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 50.1 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 5A1 | 5A2 | 25A1 | 25A2 | 25A3 | 25A4 | 25A6 | 25A7 | 25A8 | 25A9 | 25A11 | 25A12 | ||
Size | 1 | 25 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
2 P | 1A | 1A | 5A2 | 5A1 | 25A4 | 25A6 | 25A9 | 25A8 | 25A3 | 25A11 | 25A2 | 25A1 | 25A7 | 25A12 | |
5 P | 1A | 2A | 1A | 1A | 5A2 | 5A2 | 5A2 | 5A1 | 5A1 | 5A2 | 5A1 | 5A2 | 5A1 | 5A1 | |
Type | |||||||||||||||
50.1.1a | R | ||||||||||||||
50.1.1b | R | ||||||||||||||
50.1.2a1 | R | ||||||||||||||
50.1.2a2 | R | ||||||||||||||
50.1.2b1 | R | ||||||||||||||
50.1.2b2 | R | ||||||||||||||
50.1.2b3 | R | ||||||||||||||
50.1.2b4 | R | ||||||||||||||
50.1.2b5 | R | ||||||||||||||
50.1.2b6 | R | ||||||||||||||
50.1.2b7 | R | ||||||||||||||
50.1.2b8 | R | ||||||||||||||
50.1.2b9 | R | ||||||||||||||
50.1.2b10 | R |
magma: CharacterTable(G);