Properties

Label 25T4
Degree $25$
Order $50$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $D_{25}$

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(25, 4);
 

Group action invariants

Degree $n$:  $25$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $4$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $D_{25}$
Parity:  $1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $1$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,17)(2,16)(3,20)(4,19)(5,18)(6,12)(7,11)(8,15)(9,14)(10,13)(21,22)(23,25), (1,24)(2,23)(3,22)(4,21)(5,25)(6,17)(7,16)(8,20)(9,19)(10,18)(11,12)(13,15)
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$10$:  $D_{5}$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 5: $D_{5}$

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{25}$ $1$ $1$ $0$ $()$
2A $2^{12},1$ $25$ $2$ $12$ $( 2, 5)( 3, 4)( 6,24)( 7,23)( 8,22)( 9,21)(10,25)(11,17)(12,16)(13,20)(14,19)(15,18)$
5A1 $5^{5}$ $2$ $5$ $20$ $( 1, 2, 3, 4, 5)( 6, 7, 8, 9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)$
5A2 $5^{5}$ $2$ $5$ $20$ $( 1, 3, 5, 2, 4)( 6, 8,10, 7, 9)(11,13,15,12,14)(16,18,20,17,19)(21,23,25,22,24)$
25A1 $25$ $2$ $25$ $24$ $( 1,20, 8,24,15, 3,17,10,21,12, 5,19, 7,23,14, 2,16, 9,25,11, 4,18, 6,22,13)$
25A2 $25$ $2$ $25$ $24$ $( 1,19, 6,21,11, 3,16, 8,23,13, 5,18,10,25,15, 2,20, 7,22,12, 4,17, 9,24,14)$
25A3 $25$ $2$ $25$ $24$ $( 1,18, 9,23,12, 3,20, 6,25,14, 5,17, 8,22,11, 2,19,10,24,13, 4,16, 7,21,15)$
25A4 $25$ $2$ $25$ $24$ $( 1,22,18,11, 9, 2,23,19,12,10, 3,24,20,13, 6, 4,25,16,14, 7, 5,21,17,15, 8)$
25A6 $25$ $2$ $25$ $24$ $( 1,25,19,15, 6, 2,21,20,11, 7, 3,22,16,12, 8, 4,23,17,13, 9, 5,24,18,14,10)$
25A7 $25$ $2$ $25$ $24$ $( 1,16,10,22,14, 3,18, 7,24,11, 5,20, 9,21,13, 2,17, 6,23,15, 4,19, 8,25,12)$
25A8 $25$ $2$ $25$ $24$ $( 1,23,20,14, 8, 2,24,16,15, 9, 3,25,17,11,10, 4,21,18,12, 6, 5,22,19,13, 7)$
25A9 $25$ $2$ $25$ $24$ $( 1,17, 7,25,13, 3,19, 9,22,15, 5,16, 6,24,12, 2,18, 8,21,14, 4,20,10,23,11)$
25A11 $25$ $2$ $25$ $24$ $( 1,21,16,13,10, 2,22,17,14, 6, 3,23,18,15, 7, 4,24,19,11, 8, 5,25,20,12, 9)$
25A12 $25$ $2$ $25$ $24$ $( 1,24,17,12, 7, 2,25,18,13, 8, 3,21,19,14, 9, 4,22,20,15,10, 5,23,16,11, 6)$

Malle's constant $a(G)$:     $1/12$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $50=2 \cdot 5^{2}$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  50.1
magma: IdentifyGroup(G);
 
Character table:

1A 2A 5A1 5A2 25A1 25A2 25A3 25A4 25A6 25A7 25A8 25A9 25A11 25A12
Size 1 25 2 2 2 2 2 2 2 2 2 2 2 2
2 P 1A 1A 5A2 5A1 25A4 25A6 25A9 25A8 25A3 25A11 25A2 25A1 25A7 25A12
5 P 1A 2A 1A 1A 5A2 5A2 5A2 5A1 5A1 5A2 5A1 5A2 5A1 5A1
Type
50.1.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
50.1.1b R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
50.1.2a1 R 2 0 2 2 ζ52+ζ52 ζ51+ζ5 ζ51+ζ5 ζ52+ζ52 ζ52+ζ52 ζ51+ζ5 ζ51+ζ5 ζ52+ζ52 ζ52+ζ52 ζ51+ζ5
50.1.2a2 R 2 0 2 2 ζ51+ζ5 ζ52+ζ52 ζ52+ζ52 ζ51+ζ5 ζ51+ζ5 ζ52+ζ52 ζ52+ζ52 ζ51+ζ5 ζ51+ζ5 ζ52+ζ52
50.1.2b1 R 2 0 ζ2510+ζ2510 ζ255+ζ255 ζ2512+ζ2512 ζ251+ζ25 ζ2511+ζ2511 ζ252+ζ252 ζ253+ζ253 ζ259+ζ259 ζ254+ζ254 ζ258+ζ258 ζ257+ζ257 ζ256+ζ256
50.1.2b2 R 2 0 ζ2510+ζ2510 ζ255+ζ255 ζ258+ζ258 ζ259+ζ259 ζ251+ζ25 ζ257+ζ257 ζ252+ζ252 ζ256+ζ256 ζ2511+ζ2511 ζ253+ζ253 ζ2512+ζ2512 ζ254+ζ254
50.1.2b3 R 2 0 ζ2510+ζ2510 ζ255+ζ255 ζ257+ζ257 ζ2511+ζ2511 ζ254+ζ254 ζ253+ζ253 ζ258+ζ258 ζ251+ζ25 ζ256+ζ256 ζ2512+ζ2512 ζ252+ζ252 ζ259+ζ259
50.1.2b4 R 2 0 ζ2510+ζ2510 ζ255+ζ255 ζ253+ζ253 ζ256+ζ256 ζ259+ζ259 ζ2512+ζ2512 ζ257+ζ257 ζ254+ζ254 ζ251+ζ25 ζ252+ζ252 ζ258+ζ258 ζ2511+ζ2511
50.1.2b5 R 2 0 ζ2510+ζ2510 ζ255+ζ255 ζ252+ζ252 ζ254+ζ254 ζ256+ζ256 ζ258+ζ258 ζ2512+ζ2512 ζ2511+ζ2511 ζ259+ζ259 ζ257+ζ257 ζ253+ζ253 ζ251+ζ25
50.1.2b6 R 2 0 ζ255+ζ255 ζ2510+ζ2510 ζ2511+ζ2511 ζ253+ζ253 ζ258+ζ258 ζ256+ζ256 ζ259+ζ259 ζ252+ζ252 ζ2512+ζ2512 ζ251+ζ25 ζ254+ζ254 ζ257+ζ257
50.1.2b7 R 2 0 ζ255+ζ255 ζ2510+ζ2510 ζ259+ζ259 ζ257+ζ257 ζ252+ζ252 ζ2511+ζ2511 ζ254+ζ254 ζ2512+ζ2512 ζ253+ζ253 ζ256+ζ256 ζ251+ζ25 ζ258+ζ258
50.1.2b8 R 2 0 ζ255+ζ255 ζ2510+ζ2510 ζ256+ζ256 ζ2512+ζ2512 ζ257+ζ257 ζ251+ζ25 ζ2511+ζ2511 ζ258+ζ258 ζ252+ζ252 ζ254+ζ254 ζ259+ζ259 ζ253+ζ253
50.1.2b9 R 2 0 ζ255+ζ255 ζ2510+ζ2510 ζ254+ζ254 ζ258+ζ258 ζ2512+ζ2512 ζ259+ζ259 ζ251+ζ25 ζ253+ζ253 ζ257+ζ257 ζ2511+ζ2511 ζ256+ζ256 ζ252+ζ252
50.1.2b10 R 2 0 ζ255+ζ255 ζ2510+ζ2510 ζ251+ζ25 ζ252+ζ252 ζ253+ζ253 ζ254+ζ254 ζ256+ζ256 ζ257+ζ257 ζ258+ζ258 ζ259+ζ259 ζ2511+ζ2511 ζ2512+ζ2512

magma: CharacterTable(G);