Properties

Label 25T43
Degree 2525
Order 600600
Cyclic no
Abelian no
Solvable yes
Primitive yes
pp-group no
Group: C52:(C4×S3)C_5^2:(C_4\times S_3)

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(25, 43);
 

Group action invariants

Degree nn:  2525
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number tt:  4343
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  C52:(C4×S3)C_5^2:(C_4\times S_3)
Parity:  11
magma: IsEven(G);
 
Primitive:  yes
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
#Aut(F/K)\card{\Aut(F/K)}:  11
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,2,4,3)(6,20,24,15)(7,17,23,13)(8,19,22,11)(9,16,21,14)(10,18,25,12), (1,11)(2,17)(3,23)(5,10)(7,12)(8,18)(9,24)(14,19)(15,25)(16,21)
magma: Generators(G);
 

Low degree resolvents

#(G/N)\card{(G/N)}Galois groups for stem field(s)
22C2C_2 x 3
44C4C_4 x 2, C22C_2^2
66S3S_3
88C4×C2C_4\times C_2
1212D6D_{6}
2424S3×C4S_3 \times C_4

Resolvents shown for degrees 47\leq 47

Subfields

Degree 5: None

Low degree siblings

15T27 x 2, 30T150 x 2, 30T153 x 2, 30T155 x 2

Siblings are shown with degree 47\leq 47

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A 1251^{25} 11 11 00 ()()
2A 210,152^{10},1^{5} 1515 22 1010 (1,11)(2,17)(3,23)(5,10)(7,12)(8,18)(9,24)(14,19)(15,25)(16,21)( 1,11)( 2,17)( 3,23)( 5,10)( 7,12)( 8,18)( 9,24)(14,19)(15,25)(16,21)
2B 210,152^{10},1^{5} 1515 22 1010 (1,24)(2,18)(3,12)(4,6)(7,23)(8,17)(9,11)(13,22)(14,16)(19,21)( 1,24)( 2,18)( 3,12)( 4, 6)( 7,23)( 8,17)( 9,11)(13,22)(14,16)(19,21)
2C 212,12^{12},1 2525 22 1212 (1,2)(3,5)(6,22)(7,21)(8,25)(9,24)(10,23)(11,17)(12,16)(13,20)(14,19)(15,18)( 1, 2)( 3, 5)( 6,22)( 7,21)( 8,25)( 9,24)(10,23)(11,17)(12,16)(13,20)(14,19)(15,18)
3A 38,13^{8},1 5050 33 1616 (1,3,13)(2,8,7)(4,18,25)(5,23,19)(6,22,14)(9,12,21)(10,17,20)(11,16,15)( 1, 3,13)( 2, 8, 7)( 4,18,25)( 5,23,19)( 6,22,14)( 9,12,21)(10,17,20)(11,16,15)
4A1 46,14^{6},1 2525 44 1818 (1,3,2,5)(6,13,22,20)(7,15,21,18)(8,12,25,16)(9,14,24,19)(10,11,23,17)( 1, 3, 2, 5)( 6,13,22,20)( 7,15,21,18)( 8,12,25,16)( 9,14,24,19)(10,11,23,17)
4A-1 46,14^{6},1 2525 44 1818 (1,5,2,3)(6,20,22,13)(7,18,21,15)(8,16,25,12)(9,19,24,14)(10,17,23,11)( 1, 5, 2, 3)( 6,20,22,13)( 7,18,21,15)( 8,16,25,12)( 9,19,24,14)(10,17,23,11)
4B1 46,14^{6},1 7575 44 1818 (1,19,18,5)(2,7,17,12)(3,25,16,24)(4,13,20,6)(8,10,11,14)(9,23,15,21)( 1,19,18, 5)( 2, 7,17,12)( 3,25,16,24)( 4,13,20, 6)( 8,10,11,14)( 9,23,15,21)
4B-1 46,14^{6},1 7575 44 1818 (1,7,9,3)(2,19,8,16)(4,13,6,22)(5,25,10,15)(11,12,24,23)(14,18,21,17)( 1, 7, 9, 3)( 2,19, 8,16)( 4,13, 6,22)( 5,25,10,15)(11,12,24,23)(14,18,21,17)
5A 555^{5} 1212 55 2020 (1,20,9,23,12)(2,16,10,24,13)(3,17,6,25,14)(4,18,7,21,15)(5,19,8,22,11)( 1,20, 9,23,12)( 2,16,10,24,13)( 3,17, 6,25,14)( 4,18, 7,21,15)( 5,19, 8,22,11)
5B 555^{5} 1212 55 2020 (1,6,11,16,21)(2,7,12,17,22)(3,8,13,18,23)(4,9,14,19,24)(5,10,15,20,25)( 1, 6,11,16,21)( 2, 7,12,17,22)( 3, 8,13,18,23)( 4, 9,14,19,24)( 5,10,15,20,25)
6A 64,16^{4},1 5050 66 2020 (1,5,10,11,12,7)(2,25,4,15,17,13)(3,20,23,14,22,19)(8,21,24,9,16,18)( 1, 5,10,11,12, 7)( 2,25, 4,15,17,13)( 3,20,23,14,22,19)( 8,21,24, 9,16,18)
10A 102,510^{2},5 6060 1010 2222 (1,18,15,2,24,11,8,25,17,9)(3,5,12,14,21,23,10,7,19,16)(4,6,13,20,22)( 1,18,15, 2,24,11, 8,25,17, 9)( 3, 5,12,14,21,23,10, 7,19,16)( 4, 6,13,20,22)
10B 102,510^{2},5 6060 1010 2222 (1,20,11,5,21,15,6,25,16,10)(2,14,12,24,22,9,7,19,17,4)(3,8,13,18,23)( 1,20,11, 5,21,15, 6,25,16,10)( 2,14,12,24,22, 9, 7,19,17, 4)( 3, 8,13,18,23)
12A1 122,112^{2},1 5050 1212 2222 (2,16,7,3,6,13,5,11,25,4,21,19)(8,18,12,15,10,23,24,14,20,17,22,9)( 2,16, 7, 3, 6,13, 5,11,25, 4,21,19)( 8,18,12,15,10,23,24,14,20,17,22, 9)
12A-1 122,112^{2},1 5050 1212 2222 (1,2,12,18,16,21,14,13,3,22,24,19)(4,7,5,17,6,20,11,8,15,23,9,25)( 1, 2,12,18,16,21,14,13, 3,22,24,19)( 4, 7, 5,17, 6,20,11, 8,15,23, 9,25)

Malle's constant a(G)a(G):     1/101/10

magma: ConjugacyClasses(G);
 

Group invariants

Order:  600=23352600=2^{3} \cdot 3 \cdot 5^{2}
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  600.151
magma: IdentifyGroup(G);
 
Character table:

1A 2A 2B 2C 3A 4A1 4A-1 4B1 4B-1 5A 5B 6A 10A 10B 12A1 12A-1
Size 1 15 15 25 50 25 25 75 75 12 12 50 60 60 50 50
2 P 1A 1A 1A 1A 3A 2C 2C 2C 2C 5A 5B 3A 5A 5B 6A 6A
3 P 1A 2A 2B 2C 1A 4A-1 4A1 4B-1 4B1 5A 5B 2C 10A 10B 4A1 4A-1
5 P 1A 2A 2B 2C 3A 4A1 4A-1 4B1 4B-1 1A 1A 6A 2A 2B 12A1 12A-1
Type
600.151.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
600.151.1b R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
600.151.1c R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
600.151.1d R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
600.151.1e1 C 1 1 1 1 1 i i i i 1 1 1 1 1 i i
600.151.1e2 C 1 1 1 1 1 i i i i 1 1 1 1 1 i i
600.151.1f1 C 1 1 1 1 1 i i i i 1 1 1 1 1 i i
600.151.1f2 C 1 1 1 1 1 i i i i 1 1 1 1 1 i i
600.151.2a R 2 0 0 2 1 2 2 0 0 2 2 1 0 0 1 1
600.151.2b R 2 0 0 2 1 2 2 0 0 2 2 1 0 0 1 1
600.151.2c1 C 2 0 0 2 1 2i 2i 0 0 2 2 1 0 0 i i
600.151.2c2 C 2 0 0 2 1 2i 2i 0 0 2 2 1 0 0 i i
600.151.12a R 12 0 4 0 0 0 0 0 0 2 3 0 0 1 0 0
600.151.12b R 12 4 0 0 0 0 0 0 0 3 2 0 1 0 0 0
600.151.12c R 12 4 0 0 0 0 0 0 0 3 2 0 1 0 0 0
600.151.12d R 12 0 4 0 0 0 0 0 0 2 3 0 0 1 0 0

magma: CharacterTable(G);