Show commands:
Magma
magma: G := TransitiveGroup(25, 45);
Group action invariants
Degree $n$: | $25$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $45$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_5^2:C_3:C_8$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,8,21,12,6,4,11,25)(2,19,24,20,10,18,13,17)(3,5,22,23,9,7,15,14), (1,14,20,24,12,4,23,19)(2,7,18,8,11,6,25,10)(3,5,16,17,15,13,22,21) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ $6$: $S_3$ $8$: $C_8$ $12$: $C_3 : C_4$ $24$: 24T8 Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: None
Low degree siblings
30T143Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{25}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12},1$ | $25$ | $2$ | $12$ | $( 1,12)( 2,11)( 3,15)( 4,14)( 5,13)( 6, 7)( 8,10)(16,22)(17,21)(18,25)(19,24)(20,23)$ |
3A | $3^{8},1$ | $50$ | $3$ | $16$ | $( 1,13, 3)( 2, 7, 8)( 4,25,18)( 5,19,23)( 6,14,22)( 9,21,12)(10,20,17)(11,15,16)$ |
4A1 | $4^{6},1$ | $25$ | $4$ | $18$ | $( 1,20,12,23)( 2,18,11,25)( 3,16,15,22)( 4,19,14,24)( 5,17,13,21)( 6,10, 7, 8)$ |
4A-1 | $4^{6},1$ | $25$ | $4$ | $18$ | $( 1,23,12,20)( 2,25,11,18)( 3,22,15,16)( 4,24,14,19)( 5,21,13,17)( 6, 8, 7,10)$ |
5A | $5^{5}$ | $24$ | $5$ | $20$ | $( 1,23,20,12, 9)( 2,24,16,13,10)( 3,25,17,14, 6)( 4,21,18,15, 7)( 5,22,19,11, 8)$ |
6A | $6^{4},1$ | $50$ | $6$ | $20$ | $( 1, 5,24,19,20,21)( 2, 6, 4,18,14,16)( 3,12, 9,17, 8,11)( 7,10,23,13,15,22)$ |
8A1 | $8^{3},1$ | $75$ | $8$ | $21$ | $( 1,10,20, 7,12, 8,23, 6)( 2,16,18,15,11,22,25, 3)( 4,13,19,21,14, 5,24,17)$ |
8A-1 | $8^{3},1$ | $75$ | $8$ | $21$ | $( 1, 8,20, 6,12,10,23, 7)( 2,22,18, 3,11,16,25,15)( 4, 5,19,17,14,13,24,21)$ |
8A3 | $8^{3},1$ | $75$ | $8$ | $21$ | $( 1, 6,23, 8,12, 7,20,10)( 2, 3,25,22,11,15,18,16)( 4,17,24, 5,14,21,19,13)$ |
8A-3 | $8^{3},1$ | $75$ | $8$ | $21$ | $( 1, 7,23,10,12, 6,20, 8)( 2,15,25,16,11, 3,18,22)( 4,21,24,13,14,17,19, 5)$ |
12A1 | $12^{2},1$ | $50$ | $12$ | $22$ | $( 1,17, 6,19,12, 9,13,22, 8,25, 2,10)( 3,23,21,20, 5, 4,11,16,18,24,14,15)$ |
12A-1 | $12^{2},1$ | $50$ | $12$ | $22$ | $( 1,21,23,17, 7, 6,24, 4, 2, 8,18,19)( 3,20,13,16,25,11,22,10,12, 9, 5,14)$ |
Malle's constant $a(G)$: $1/12$
magma: ConjugacyClasses(G);
Group invariants
Order: | $600=2^{3} \cdot 3 \cdot 5^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 600.148 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A | 4A1 | 4A-1 | 5A | 6A | 8A1 | 8A-1 | 8A3 | 8A-3 | 12A1 | 12A-1 | ||
Size | 1 | 25 | 50 | 25 | 25 | 24 | 50 | 75 | 75 | 75 | 75 | 50 | 50 | |
2 P | 1A | 1A | 3A | 2A | 2A | 5A | 3A | 4A1 | 4A1 | 4A-1 | 4A-1 | 6A | 6A | |
3 P | 1A | 2A | 1A | 4A-1 | 4A1 | 5A | 2A | 8A1 | 8A-3 | 8A-1 | 8A3 | 4A1 | 4A-1 | |
5 P | 1A | 2A | 3A | 4A1 | 4A-1 | 1A | 6A | 8A-1 | 8A3 | 8A1 | 8A-3 | 12A1 | 12A-1 | |
Type | ||||||||||||||
600.148.1a | R | |||||||||||||
600.148.1b | R | |||||||||||||
600.148.1c1 | C | |||||||||||||
600.148.1c2 | C | |||||||||||||
600.148.1d1 | C | |||||||||||||
600.148.1d2 | C | |||||||||||||
600.148.1d3 | C | |||||||||||||
600.148.1d4 | C | |||||||||||||
600.148.2a | R | |||||||||||||
600.148.2b | S | |||||||||||||
600.148.2c1 | C | |||||||||||||
600.148.2c2 | C | |||||||||||||
600.148.24a | R |
magma: CharacterTable(G);