Show commands:
Magma
magma: G := TransitiveGroup(26, 9);
Group action invariants
Degree $n$: | $26$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $9$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_{26}:C_6$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,6,20,4,26,12)(2,5,19,3,25,11)(7,14,21,23,17,10)(8,13,22,24,18,9)(15,16), (1,13,3,7,21,5)(2,14,4,8,22,6)(9,16,24,26,20,11)(10,15,23,25,19,12) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $3$: $C_3$ $4$: $C_2^2$ $6$: $C_6$ x 3 $12$: $C_6\times C_2$ $78$: $C_{13}:C_6$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 13: $C_{13}:C_6$
Low degree siblings
26T9Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{26}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{13}$ | $1$ | $2$ | $13$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)$ |
2B | $2^{12},1^{2}$ | $13$ | $2$ | $12$ | $( 1, 7)( 2, 8)( 3, 5)( 4, 6)( 9,26)(10,25)(11,24)(12,23)(13,21)(14,22)(15,19)(16,20)$ |
2C | $2^{13}$ | $13$ | $2$ | $13$ | $( 1,23)( 2,24)( 3,22)( 4,21)( 5,19)( 6,20)( 7,18)( 8,17)( 9,15)(10,16)(11,14)(12,13)(25,26)$ |
3A1 | $3^{8},1^{2}$ | $13$ | $3$ | $16$ | $( 1, 3,21)( 2, 4,22)( 5,13, 7)( 6,14, 8)( 9,24,20)(10,23,19)(11,16,26)(12,15,25)$ |
3A-1 | $3^{8},1^{2}$ | $13$ | $3$ | $16$ | $( 1,21, 3)( 2,22, 4)( 5, 7,13)( 6, 8,14)( 9,20,24)(10,19,23)(11,26,16)(12,25,15)$ |
6A1 | $6^{4},2$ | $13$ | $6$ | $21$ | $( 1,25,20, 2,26,19)( 3, 6,11, 4, 5,12)( 7,18,21, 8,17,22)( 9,23,13,10,24,14)(15,16)$ |
6A-1 | $6^{4},1^{2}$ | $13$ | $6$ | $20$ | $( 1, 5,21, 7, 3,13)( 2, 6,22, 8, 4,14)( 9,11,20,26,24,16)(10,12,19,25,23,15)$ |
6B1 | $6^{4},2$ | $13$ | $6$ | $21$ | $( 1,10,11, 6,24,22)( 2, 9,12, 5,23,21)( 3, 4)( 7,18,13,25,16,19)( 8,17,14,26,15,20)$ |
6B-1 | $6^{4},2$ | $13$ | $6$ | $21$ | $( 1,19,13,15,24, 4)( 2,20,14,16,23, 3)( 5,10,26,12, 7,18)( 6, 9,25,11, 8,17)(21,22)$ |
6C1 | $6^{4},1^{2}$ | $13$ | $6$ | $20$ | $( 1,13, 3, 7,21, 5)( 2,14, 4, 8,22, 6)( 9,16,24,26,20,11)(10,15,23,25,19,12)$ |
6C-1 | $6^{4},2$ | $13$ | $6$ | $21$ | $( 1,15,11, 2,16,12)( 3, 8,17, 4, 7,18)( 5,25,24, 6,26,23)( 9,10)(13,19,21,14,20,22)$ |
13A1 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1,21,16, 9, 3,24,17,11, 5,26,20,13, 7)( 2,22,15,10, 4,23,18,12, 6,25,19,14, 8)$ |
13A2 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1,16, 3,17, 5,20, 7,21, 9,24,11,26,13)( 2,15, 4,18, 6,19, 8,22,10,23,12,25,14)$ |
26A1 | $26$ | $6$ | $26$ | $25$ | $( 1,12,21, 6,16,25, 9,19, 3,14,24, 8,17, 2,11,22, 5,15,26,10,20, 4,13,23, 7,18)$ |
26A5 | $26$ | $6$ | $26$ | $25$ | $( 1,25,24,22,20,18,16,14,11,10, 7, 6, 3, 2,26,23,21,19,17,15,13,12, 9, 8, 5, 4)$ |
Malle's constant $a(G)$: $1/12$
magma: ConjugacyClasses(G);
Group invariants
Order: | $156=2^{2} \cdot 3 \cdot 13$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 156.8 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 3A1 | 3A-1 | 6A1 | 6A-1 | 6B1 | 6B-1 | 6C1 | 6C-1 | 13A1 | 13A2 | 26A1 | 26A5 | ||
Size | 1 | 1 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 6 | 6 | 6 | 6 | |
2 P | 1A | 1A | 1A | 1A | 3A-1 | 3A1 | 3A1 | 3A-1 | 3A1 | 3A-1 | 3A1 | 3A-1 | 13A2 | 13A1 | 13A1 | 13A2 | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 2A | 2B | 2C | 2C | 2B | 2A | 13A1 | 13A2 | 26A1 | 26A5 | |
13 P | 1A | 2A | 2B | 2C | 3A1 | 3A-1 | 6C1 | 6A-1 | 6B-1 | 6B1 | 6A1 | 6C-1 | 1A | 1A | 2A | 2A | |
Type | |||||||||||||||||
156.8.1a | R | ||||||||||||||||
156.8.1b | R | ||||||||||||||||
156.8.1c | R | ||||||||||||||||
156.8.1d | R | ||||||||||||||||
156.8.1e1 | C | ||||||||||||||||
156.8.1e2 | C | ||||||||||||||||
156.8.1f1 | C | ||||||||||||||||
156.8.1f2 | C | ||||||||||||||||
156.8.1g1 | C | ||||||||||||||||
156.8.1g2 | C | ||||||||||||||||
156.8.1h1 | C | ||||||||||||||||
156.8.1h2 | C | ||||||||||||||||
156.8.6a1 | R | ||||||||||||||||
156.8.6a2 | R | ||||||||||||||||
156.8.6b1 | R | ||||||||||||||||
156.8.6b2 | R |
magma: CharacterTable(G);