Show commands:
Magma
magma: G := TransitiveGroup(27, 12);
Group action invariants
Degree $n$: | $27$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $12$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $S_3\times C_9$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $9$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,11,20,2,12,21,3,10,19)(4,9,23,25,13,17,6,8,22,27,15,16,5,7,24,26,14,18), (1,26,6)(2,27,4)(3,25,5)(7,13,10)(8,14,11)(9,15,12)(16,23,21)(17,24,19)(18,22,20) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $S_3$, $C_6$ $9$: $C_9$ $18$: $S_3\times C_3$, $C_{18}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 9: $C_9$, $S_3\times C_3$
Low degree siblings
18T16Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{27}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{9},1^{9}$ | $3$ | $2$ | $9$ | $( 4,27)( 5,25)( 6,26)( 7,13)( 8,14)( 9,15)(16,23)(17,24)(18,22)$ |
3A1 | $3^{9}$ | $1$ | $3$ | $18$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,15,14)(16,18,17)(19,21,20)(22,24,23)(25,27,26)$ |
3A-1 | $3^{9}$ | $1$ | $3$ | $18$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)$ |
3B | $3^{9}$ | $2$ | $3$ | $18$ | $( 1,27, 5)( 2,25, 6)( 3,26, 4)( 7,14,12)( 8,15,10)( 9,13,11)(16,24,20)(17,22,21)(18,23,19)$ |
3C1 | $3^{9}$ | $2$ | $3$ | $18$ | $( 1,26, 6)( 2,27, 4)( 3,25, 5)( 7,13,10)( 8,14,11)( 9,15,12)(16,23,21)(17,24,19)(18,22,20)$ |
3C-1 | $3^{9}$ | $2$ | $3$ | $18$ | $( 1,25, 4)( 2,26, 5)( 3,27, 6)( 7,15,11)( 8,13,12)( 9,14,10)(16,22,19)(17,23,20)(18,24,21)$ |
6A1 | $6^{3},3^{3}$ | $3$ | $6$ | $21$ | $( 1, 2, 3)( 4,25, 6,27, 5,26)( 7,14, 9,13, 8,15)(10,11,12)(16,24,18,23,17,22)(19,20,21)$ |
6A-1 | $6^{3},3^{3}$ | $3$ | $6$ | $21$ | $( 1, 3, 2)( 4,26, 5,27, 6,25)( 7,15, 8,13, 9,14)(10,12,11)(16,22,17,23,18,24)(19,21,20)$ |
9A1 | $9^{3}$ | $1$ | $9$ | $24$ | $( 1,11,20, 2,12,21, 3,10,19)( 4,15,23, 5,13,24, 6,14,22)( 7,17,26, 8,18,27, 9,16,25)$ |
9A-1 | $9^{3}$ | $1$ | $9$ | $24$ | $( 1,12,19, 2,10,20, 3,11,21)( 4,13,22, 5,14,23, 6,15,24)( 7,18,25, 8,16,26, 9,17,27)$ |
9A2 | $9^{3}$ | $1$ | $9$ | $24$ | $( 1,21,11, 3,20,10, 2,19,12)( 4,24,15, 6,23,14, 5,22,13)( 7,27,17, 9,26,16, 8,25,18)$ |
9A-2 | $9^{3}$ | $1$ | $9$ | $24$ | $( 1,20,12, 3,19,11, 2,21,10)( 4,23,13, 6,22,15, 5,24,14)( 7,26,18, 9,25,17, 8,27,16)$ |
9A4 | $9^{3}$ | $1$ | $9$ | $24$ | $( 1,19,10, 3,21,12, 2,20,11)( 4,22,14, 6,24,13, 5,23,15)( 7,25,16, 9,27,18, 8,26,17)$ |
9A-4 | $9^{3}$ | $1$ | $9$ | $24$ | $( 1,10,21, 2,11,19, 3,12,20)( 4,14,24, 5,15,22, 6,13,23)( 7,16,27, 8,17,25, 9,18,26)$ |
9B1 | $9^{3}$ | $2$ | $9$ | $24$ | $( 1, 7,23, 2, 8,24, 3, 9,22)( 4,11,17, 5,12,18, 6,10,16)(13,21,27,14,19,25,15,20,26)$ |
9B-1 | $9^{3}$ | $2$ | $9$ | $24$ | $( 1,16,14, 3,18,13, 2,17,15)( 4,19, 9, 6,21, 8, 5,20, 7)(10,27,24,12,26,23,11,25,22)$ |
9B2 | $9^{3}$ | $2$ | $9$ | $24$ | $( 1,17,13, 3,16,15, 2,18,14)( 4,20, 8, 6,19, 7, 5,21, 9)(10,25,23,12,27,22,11,26,24)$ |
9B-2 | $9^{3}$ | $2$ | $9$ | $24$ | $( 1, 9,24, 2, 7,22, 3, 8,23)( 4,10,18, 5,11,16, 6,12,17)(13,20,25,14,21,26,15,19,27)$ |
9B4 | $9^{3}$ | $2$ | $9$ | $24$ | $( 1,18,15, 3,17,14, 2,16,13)( 4,21, 7, 6,20, 9, 5,19, 8)(10,26,22,12,25,24,11,27,23)$ |
9B-4 | $9^{3}$ | $2$ | $9$ | $24$ | $( 1, 8,22, 2, 9,23, 3, 7,24)( 4,12,16, 5,10,17, 6,11,18)(13,19,26,14,20,27,15,21,25)$ |
18A1 | $18,9$ | $3$ | $18$ | $25$ | $( 1,11,20, 2,12,21, 3,10,19)( 4, 9,23,25,13,17, 6, 8,22,27,15,16, 5, 7,24,26,14,18)$ |
18A-1 | $18,9$ | $3$ | $18$ | $25$ | $( 1,20,12, 3,19,11, 2,21,10)( 4,16,13,26,22, 9, 5,17,14,27,23, 7, 6,18,15,25,24, 8)$ |
18A5 | $18,9$ | $3$ | $18$ | $25$ | $( 1,21,11, 3,20,10, 2,19,12)( 4,17,15,26,23, 8, 5,18,13,27,24, 9, 6,16,14,25,22, 7)$ |
18A-5 | $18,9$ | $3$ | $18$ | $25$ | $( 1,12,19, 2,10,20, 3,11,21)( 4, 7,22,25,14,16, 6, 9,24,27,13,18, 5, 8,23,26,15,17)$ |
18A7 | $18,9$ | $3$ | $18$ | $25$ | $( 1,19,10, 3,21,12, 2,20,11)( 4,18,14,26,24, 7, 5,16,15,27,22, 8, 6,17,13,25,23, 9)$ |
18A-7 | $18,9$ | $3$ | $18$ | $25$ | $( 1,10,21, 2,11,19, 3,12,20)( 4, 8,24,25,15,18, 6, 7,23,27,14,17, 5, 9,22,26,13,16)$ |
Malle's constant $a(G)$: $1/9$
magma: ConjugacyClasses(G);
Group invariants
Order: | $54=2 \cdot 3^{3}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 54.4 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A1 | 3A-1 | 3B | 3C1 | 3C-1 | 6A1 | 6A-1 | 9A1 | 9A-1 | 9A2 | 9A-2 | 9A4 | 9A-4 | 9B1 | 9B-1 | 9B2 | 9B-2 | 9B4 | 9B-4 | 18A1 | 18A-1 | 18A5 | 18A-5 | 18A7 | 18A-7 | ||
Size | 1 | 3 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | |
2 P | 1A | 1A | 3A-1 | 3A1 | 3C1 | 3B | 3C-1 | 3A1 | 3A-1 | 9A1 | 9A4 | 9A-4 | 9A2 | 9A-1 | 9A-2 | 9B-2 | 9B-4 | 9B-1 | 9B4 | 9B2 | 9B1 | 9A1 | 9A2 | 9A-4 | 9A4 | 9A-1 | 9A-2 | |
3 P | 1A | 2A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 3A-1 | 3A-1 | 3A1 | 3A1 | 3A1 | 3A-1 | 3A-1 | 3A1 | 3A1 | 3A-1 | 3A1 | 3A-1 | 6A1 | 6A-1 | 6A-1 | 6A1 | 6A-1 | 6A1 | |
Type | ||||||||||||||||||||||||||||
54.4.1a | R | |||||||||||||||||||||||||||
54.4.1b | R | |||||||||||||||||||||||||||
54.4.1c1 | C | |||||||||||||||||||||||||||
54.4.1c2 | C | |||||||||||||||||||||||||||
54.4.1d1 | C | |||||||||||||||||||||||||||
54.4.1d2 | C | |||||||||||||||||||||||||||
54.4.1e1 | C | |||||||||||||||||||||||||||
54.4.1e2 | C | |||||||||||||||||||||||||||
54.4.1e3 | C | |||||||||||||||||||||||||||
54.4.1e4 | C | |||||||||||||||||||||||||||
54.4.1e5 | C | |||||||||||||||||||||||||||
54.4.1e6 | C | |||||||||||||||||||||||||||
54.4.1f1 | C | |||||||||||||||||||||||||||
54.4.1f2 | C | |||||||||||||||||||||||||||
54.4.1f3 | C | |||||||||||||||||||||||||||
54.4.1f4 | C | |||||||||||||||||||||||||||
54.4.1f5 | C | |||||||||||||||||||||||||||
54.4.1f6 | C | |||||||||||||||||||||||||||
54.4.2a | R | |||||||||||||||||||||||||||
54.4.2b1 | C | |||||||||||||||||||||||||||
54.4.2b2 | C | |||||||||||||||||||||||||||
54.4.2c1 | C | |||||||||||||||||||||||||||
54.4.2c2 | C | |||||||||||||||||||||||||||
54.4.2c3 | C | |||||||||||||||||||||||||||
54.4.2c4 | C | |||||||||||||||||||||||||||
54.4.2c5 | C | |||||||||||||||||||||||||||
54.4.2c6 | C |
magma: CharacterTable(G);