Properties

Label 29T7
29T7 1 2 1->2 3 2->3 4 3->4 5 4->5 6 5->6 7 6->7 8 7->8 9 8->9 10 9->10 11 10->11 12 11->12 13 12->13 14 13->14 15 14->15 16 15->16 17 16->17 18 17->18 19 18->19 20 19->20 21 20->21 22 21->22 23 22->23 24 23->24 25 24->25 26 25->26 27 26->27 28 27->28 27->28 29 28->29 28->29 29->1 29->27
Degree 2929
Order 4.421×10304.421\times 10^{30}
Cyclic no
Abelian no
Solvable no
Primitive yes
pp-group no
Group: A29A_{29}

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(29, 7);
 

Group invariants

Abstract group:  A29A_{29}
magma: IdentifyGroup(G);
 
Order:  4420880996869850977271808000000=2243135674112132171923294420880996869850977271808000000=2^{24} \cdot 3^{13} \cdot 5^{6} \cdot 7^{4} \cdot 11^{2} \cdot 13^{2} \cdot 17 \cdot 19 \cdot 23 \cdot 29
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  no
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
magma: NilpotencyClass(G);
 

Group action invariants

Degree nn:  2929
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number tt:  77
magma: t, n := TransitiveGroupIdentification(G); t;
 
Parity:  11
magma: IsEven(G);
 
Primitive:  yes
magma: IsPrimitive(G);
 
#Aut(F/K)\card{\Aut(F/K)}:  11
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (27,28,29)(27,28,29), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29)
magma: Generators(G);
 

Low degree resolvents

none

Resolvents shown for degrees 47\leq 47

Subfields

Prime degree - none

Low degree siblings

There are no siblings with degree 47\leq 47
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

magma: ConjugacyClasses(G);
 

Character table

Character table not computed

magma: CharacterTable(G);
 

Regular extensions

Data not computed