Show commands:
Magma
magma: G := TransitiveGroup(29, 7);
Group invariants
Abstract group: | magma: IdentifyGroup(G);
| ||
Order: | magma: Order(G);
| ||
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree : | magma: t, n := TransitiveGroupIdentification(G); n;
| ||
Transitive number : | magma: t, n := TransitiveGroupIdentification(G); t;
| ||
Parity: | magma: IsEven(G);
| ||
Primitive: | yes | magma: IsPrimitive(G);
| |
: | magma: Order(Centralizer(SymmetricGroup(n), G));
| ||
Generators: | , | magma: Generators(G);
|
Low degree resolvents
noneResolvents shown for degrees
Subfields
Prime degree - none
Low degree siblings
There are no siblings with degree
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computedmagma: ConjugacyClasses(G);
Character table
Character table not computed
magma: CharacterTable(G);
Regular extensions
Data not computed