Show commands:
Magma
magma: G := TransitiveGroup(2, 1);
Group action invariants
Degree : | magma: t, n := TransitiveGroupIdentification(G); n;
| ||
Transitive number : | magma: t, n := TransitiveGroupIdentification(G); t;
| ||
Group: | |||
CHM label: | |||
Parity: | magma: IsEven(G);
| ||
Primitive: | yes | magma: IsPrimitive(G);
| |
magma: NilpotencyClass(G);
| |||
: | magma: Order(Centralizer(SymmetricGroup(n), G));
| ||
Generators: | (1,2) | magma: Generators(G);
|
Low degree resolvents
noneResolvents shown for degrees
Subfields
Prime degree - none
Low degree siblings
There are no siblings with degree
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | |||||
2A |
magma: ConjugacyClasses(G);
Group invariants
Order: | (is prime) | magma: Order(G);
| |
Cyclic: | yes | magma: IsCyclic(G);
| |
Abelian: | yes | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | |||
Label: | 2.1 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | ||
Size | 1 | 1 | |
2 P | 1A | 1A | |
Type | |||
2.1.1a | R | ||
2.1.1b | R |
magma: CharacterTable(G);
Indecomposable integral representations
Complete
list of indecomposable integral representations:
|