Properties

Label 2T1
Degree 22
Order 22
Cyclic yes
Abelian yes
Solvable yes
Primitive yes
pp-group yes
Group: C2C_2

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(2, 1);
 

Group action invariants

Degree nn:  22
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number tt:  11
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  C2C_2
CHM label:   S2S2
Parity:  1-1
magma: IsEven(G);
 
Primitive:  yes
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
#Aut(F/K)\card{\Aut(F/K)}:  22
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,2)
magma: Generators(G);
 

Low degree resolvents

none

Resolvents shown for degrees 47\leq 47

Subfields

Prime degree - none

Low degree siblings

There are no siblings with degree 47\leq 47
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A 121^{2} 11 11 00 ()()
2A 22 11 22 11 (1,2)(1,2)

Malle's constant a(G)a(G):     11

magma: ConjugacyClasses(G);
 

Group invariants

Order:  22 (is prime)
magma: Order(G);
 
Cyclic:  yes
magma: IsCyclic(G);
 
Abelian:  yes
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:  11
Label:  2.1
magma: IdentifyGroup(G);
 
Character table:

1A 2A
Size 1 1
2 P 1A 1A
Type
2.1.1a R 1 1
2.1.1b R 1 1

magma: CharacterTable(G);
 

Indecomposable integral representations

Complete list of indecomposable integral representations:

Name Dim (1,2)(1,2) \mapsto
Triv 11 (1)\left(\begin{array}{r}1\end{array}\right)
Sign 11 (1)\left(\begin{array}{r}-1\end{array}\right)
LL 22 (0110)\left(\begin{array}{rr}0 & 1\\1 & 0\end{array}\right)
The decomposition of an arbitrary integral representation as a direct sum of indecomposables is unique.