Properties

Label 30T16
Degree $30$
Order $90$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_3\times D_{15}$

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(30, 16);
 

Group action invariants

Degree $n$:  $30$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $16$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $C_3\times D_{15}$
Parity:  $-1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $15$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,15,12,9,5,3,14,11,8,4,2,13,10,7,6)(16,29,25,22,20,17,30,26,23,21,18,28,27,24,19), (1,21,2,19,3,20)(4,16,5,17,6,18)(7,28,8,29,9,30)(10,27,11,25,12,26)(13,24,14,22,15,23)
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$3$:  $C_3$
$6$:  $S_3$, $C_6$
$10$:  $D_{5}$
$18$:  $S_3\times C_3$
$30$:  $D_{15}$, $D_5\times C_3$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: None

Degree 5: $D_{5}$

Degree 6: $S_3\times C_3$

Degree 10: $D_5$

Degree 15: None

Low degree siblings

45T5

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{30}$ $1$ $1$ $0$ $()$
2A $2^{15}$ $15$ $2$ $15$ $( 1,20)( 2,21)( 3,19)( 4,18)( 5,16)( 6,17)( 7,30)( 8,28)( 9,29)(10,26)(11,27)(12,25)(13,23)(14,24)(15,22)$
3A1 $3^{10}$ $1$ $3$ $20$ $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,15,14)(16,18,17)(19,21,20)(22,24,23)(25,27,26)(28,30,29)$
3A-1 $3^{10}$ $1$ $3$ $20$ $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)$
3B $3^{5},1^{15}$ $2$ $3$ $10$ $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,15,14)$
3C1 $3^{10}$ $2$ $3$ $20$ $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,18,17)(19,21,20)(22,24,23)(25,27,26)(28,30,29)$
3C-1 $3^{5},1^{15}$ $2$ $3$ $10$ $(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)$
5A1 $5^{6}$ $2$ $5$ $24$ $( 1, 9,14, 4,10)( 2, 7,15, 5,11)( 3, 8,13, 6,12)(16,22,30,21,27)(17,23,28,19,25)(18,24,29,20,26)$
5A2 $5^{6}$ $2$ $5$ $24$ $( 1,14,10, 9, 4)( 2,15,11, 7, 5)( 3,13,12, 8, 6)(16,30,27,22,21)(17,28,25,23,19)(18,29,26,24,20)$
6A1 $6^{5}$ $15$ $6$ $25$ $( 1,19, 2,20, 3,21)( 4,17, 5,18, 6,16)( 7,29, 8,30, 9,28)(10,25,11,26,12,27)(13,22,14,23,15,24)$
6A-1 $6^{5}$ $15$ $6$ $25$ $( 1,21, 3,20, 2,19)( 4,16, 6,18, 5,17)( 7,28, 9,30, 8,29)(10,27,12,26,11,25)(13,24,15,23,14,22)$
15A1 $15,5^{3}$ $2$ $15$ $26$ $( 1,14,10, 9, 4)( 2,15,11, 7, 5)( 3,13,12, 8, 6)(16,28,26,22,19,18,30,25,24,21,17,29,27,23,20)$
15A2 $15,5^{3}$ $2$ $15$ $26$ $( 1, 9,14, 4,10)( 2, 7,15, 5,11)( 3, 8,13, 6,12)(16,23,29,21,25,18,22,28,20,27,17,24,30,19,26)$
15A4 $15^{2}$ $2$ $15$ $28$ $( 1, 7,13, 4,11, 3, 9,15, 6,10, 2, 8,14, 5,12)(16,23,29,21,25,18,22,28,20,27,17,24,30,19,26)$
15A7 $15^{2}$ $2$ $15$ $28$ $( 1,11, 6,14, 7, 3,10, 5,13, 9, 2,12, 4,15, 8)(16,26,19,30,24,17,27,20,28,22,18,25,21,29,23)$
15B1 $15^{2}$ $2$ $15$ $28$ $( 1, 7,13, 4,11, 3, 9,15, 6,10, 2, 8,14, 5,12)(16,24,28,21,26,17,22,29,19,27,18,23,30,20,25)$
15B-1 $15,5^{3}$ $2$ $15$ $26$ $( 1,13,11, 9, 6, 2,14,12, 7, 4, 3,15,10, 8, 5)(16,30,27,22,21)(17,28,25,23,19)(18,29,26,24,20)$
15B2 $15^{2}$ $2$ $15$ $28$ $( 1,15,12, 9, 5, 3,14,11, 8, 4, 2,13,10, 7, 6)(16,29,25,22,20,17,30,26,23,21,18,28,27,24,19)$
15B-2 $15^{2}$ $2$ $15$ $28$ $( 1, 8,15, 4,12, 2, 9,13, 5,10, 3, 7,14, 6,11)(16,24,28,21,26,17,22,29,19,27,18,23,30,20,25)$
15C1 $15,5^{3}$ $2$ $15$ $26$ $( 1, 4, 9,10,14)( 2, 5, 7,11,15)( 3, 6, 8,12,13)(16,19,24,27,28,18,21,23,26,30,17,20,22,25,29)$
15C-1 $15^{2}$ $2$ $15$ $28$ $( 1, 5, 8,10,15, 3, 4, 7,12,14, 2, 6, 9,11,13)(16,20,23,27,29,17,21,24,25,30,18,19,22,26,28)$
15C2 $15^{2}$ $2$ $15$ $28$ $( 1,15,12, 9, 5, 3,14,11, 8, 4, 2,13,10, 7, 6)(16,28,26,22,19,18,30,25,24,21,17,29,27,23,20)$
15C-2 $15,5^{3}$ $2$ $15$ $26$ $( 1, 6, 7,10,13, 2, 4, 8,11,14, 3, 5, 9,12,15)(16,21,22,27,30)(17,19,23,25,28)(18,20,24,26,29)$
15C4 $15,5^{3}$ $2$ $15$ $26$ $( 1,10, 4,14, 9)( 2,11, 5,15, 7)( 3,12, 6,13, 8)(16,25,20,30,23,18,27,19,29,22,17,26,21,28,24)$
15C-4 $15,5^{3}$ $2$ $15$ $26$ $( 1,12, 5,14, 8, 2,10, 6,15, 9, 3,11, 4,13, 7)(16,27,21,30,22)(17,25,19,28,23)(18,26,20,29,24)$
15C7 $15,5^{3}$ $2$ $15$ $26$ $( 1, 8,15, 4,12, 2, 9,13, 5,10, 3, 7,14, 6,11)(16,22,30,21,27)(17,23,28,19,25)(18,24,29,20,26)$
15C-7 $15^{2}$ $2$ $15$ $28$ $( 1,13,11, 9, 6, 2,14,12, 7, 4, 3,15,10, 8, 5)(16,29,25,22,20,17,30,26,23,21,18,28,27,24,19)$

Malle's constant $a(G)$:     $1/10$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $90=2 \cdot 3^{2} \cdot 5$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  90.7
magma: IdentifyGroup(G);
 
Character table:

1A 2A 3A1 3A-1 3B 3C1 3C-1 5A1 5A2 6A1 6A-1 15A1 15A2 15A4 15A7 15B1 15B-1 15B2 15B-2 15C1 15C-1 15C2 15C-2 15C4 15C-4 15C7 15C-7
Size 1 15 1 1 2 2 2 2 2 15 15 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 P 1A 1A 3A-1 3A1 3C1 3B 3C-1 5A2 5A1 3A-1 3A1 15C-2 15C4 15B2 15A1 15A4 15C2 15A2 15B-2 15C7 15A7 15B-1 15C-7 15C1 15C-1 15C-4 15B1
3 P 1A 2A 1A 1A 1A 1A 1A 5A2 5A1 2A 2A 5A1 5A2 5A2 5A2 5A2 5A1 5A1 5A2 5A1 5A1 5A1 5A1 5A2 5A2 5A2 5A1
5 P 1A 2A 3A-1 3A1 3C1 3B 3C-1 1A 1A 6A-1 6A1 3C-1 3C-1 3A1 3B 3B 3C1 3B 3A-1 3C-1 3B 3A1 3C1 3C-1 3C1 3C1 3A-1
Type
90.7.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
90.7.1b R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
90.7.1c1 C 1 1 ζ31 ζ3 1 ζ31 ζ3 1 1 ζ3 ζ31 ζ31 ζ3 ζ3 ζ31 1 1 1 1 ζ3 ζ31 ζ31 ζ3 ζ3 ζ31 ζ3 ζ31
90.7.1c2 C 1 1 ζ3 ζ31 1 ζ3 ζ31 1 1 ζ31 ζ3 ζ3 ζ31 ζ31 ζ3 1 1 1 1 ζ31 ζ3 ζ3 ζ31 ζ31 ζ3 ζ31 ζ3
90.7.1d1 C 1 1 ζ31 ζ3 1 ζ31 ζ3 1 1 ζ3 ζ31 ζ31 ζ3 ζ3 ζ31 1 1 1 1 ζ3 ζ31 ζ31 ζ3 ζ3 ζ31 ζ3 ζ31
90.7.1d2 C 1 1 ζ3 ζ31 1 ζ3 ζ31 1 1 ζ31 ζ3 ζ3 ζ31 ζ31 ζ3 1 1 1 1 ζ31 ζ3 ζ3 ζ31 ζ31 ζ3 ζ31 ζ3
90.7.2a R 2 0 2 2 1 1 1 2 2 0 0 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
90.7.2b1 R 2 0 2 2 2 2 2 ζ52+ζ52 ζ51+ζ5 0 0 ζ51+ζ5 ζ51+ζ5 ζ52+ζ52 ζ52+ζ52 ζ52+ζ52 ζ51+ζ5 ζ52+ζ52 ζ51+ζ5 ζ52+ζ52 ζ52+ζ52 ζ51+ζ5 ζ51+ζ5 ζ52+ζ52 ζ52+ζ52 ζ51+ζ5 ζ51+ζ5
90.7.2b2 R 2 0 2 2 2 2 2 ζ51+ζ5 ζ52+ζ52 0 0 ζ52+ζ52 ζ52+ζ52 ζ51+ζ5 ζ51+ζ5 ζ51+ζ5 ζ52+ζ52 ζ51+ζ5 ζ52+ζ52 ζ51+ζ5 ζ51+ζ5 ζ52+ζ52 ζ52+ζ52 ζ51+ζ5 ζ51+ζ5 ζ52+ζ52 ζ52+ζ52
90.7.2c1 C 2 0 2ζ31 2ζ3 1 ζ31 ζ3 2 2 0 0 2ζ31 2ζ3 2ζ3 2ζ31 1 1 1 1 ζ3 ζ31 ζ31 ζ3 ζ3 ζ31 ζ3 ζ31
90.7.2c2 C 2 0 2ζ3 2ζ31 1 ζ3 ζ31 2 2 0 0 2ζ3 2ζ31 2ζ31 2ζ3 1 1 1 1 ζ31 ζ3 ζ3 ζ31 ζ31 ζ3 ζ31 ζ3
90.7.2d1 R 2 0 2 2 1 1 1 ζ156+ζ156 ζ153+ζ153 0 0 ζ153+ζ153 ζ153+ζ153 ζ156+ζ156 ζ156+ζ156 ζ154+ζ154 ζ157+ζ157 ζ151+ζ15 ζ152+ζ152 ζ151+ζ15 ζ151+ζ15 ζ152+ζ152 ζ152+ζ152 ζ154+ζ154 ζ154+ζ154 ζ157+ζ157 ζ157+ζ157
90.7.2d2 R 2 0 2 2 1 1 1 ζ156+ζ156 ζ153+ζ153 0 0 ζ153+ζ153 ζ153+ζ153 ζ156+ζ156 ζ156+ζ156 ζ151+ζ15 ζ152+ζ152 ζ154+ζ154 ζ157+ζ157 ζ154+ζ154 ζ154+ζ154 ζ157+ζ157 ζ157+ζ157 ζ151+ζ15 ζ151+ζ15 ζ152+ζ152 ζ152+ζ152
90.7.2d3 R 2 0 2 2 1 1 1 ζ153+ζ153 ζ156+ζ156 0 0 ζ156+ζ156 ζ156+ζ156 ζ153+ζ153 ζ153+ζ153 ζ157+ζ157 ζ151+ζ15 ζ152+ζ152 ζ154+ζ154 ζ152+ζ152 ζ152+ζ152 ζ154+ζ154 ζ154+ζ154 ζ157+ζ157 ζ157+ζ157 ζ151+ζ15 ζ151+ζ15
90.7.2d4 R 2 0 2 2 1 1 1 ζ153+ζ153 ζ156+ζ156 0 0 ζ156+ζ156 ζ156+ζ156 ζ153+ζ153 ζ153+ζ153 ζ152+ζ152 ζ154+ζ154 ζ157+ζ157 ζ151+ζ15 ζ157+ζ157 ζ157+ζ157 ζ151+ζ15 ζ151+ζ15 ζ152+ζ152 ζ152+ζ152 ζ154+ζ154 ζ154+ζ154
90.7.2e1 C 2 0 2ζ155 2ζ155 2 2ζ155 2ζ155 ζ156+ζ156 ζ153+ζ153 0 0 1ζ15ζ154+ζ155 1+ζ15+ζ152ζ153+ζ154ζ155+ζ157 1ζ15ζ152+ζ153ζ154ζ157 ζ15+ζ154 ζ156+ζ156 ζ153+ζ153 ζ156+ζ156 ζ153+ζ153 1ζ15ζ152+ζ153ζ154ζ157 ζ15+ζ154 1ζ15ζ154+ζ155 1+ζ15+ζ152ζ153+ζ154ζ155+ζ157 1ζ15ζ152+ζ153ζ154ζ157 ζ15+ζ154 1+ζ15+ζ152ζ153+ζ154ζ155+ζ157 1ζ15ζ154+ζ155
90.7.2e2 C 2 0 2ζ155 2ζ155 2 2ζ155 2ζ155 ζ156+ζ156 ζ153+ζ153 0 0 1+ζ15+ζ152ζ153+ζ154ζ155+ζ157 1ζ15ζ154+ζ155 ζ15+ζ154 1ζ15ζ152+ζ153ζ154ζ157 ζ156+ζ156 ζ153+ζ153 ζ156+ζ156 ζ153+ζ153 ζ15+ζ154 1ζ15ζ152+ζ153ζ154ζ157 1+ζ15+ζ152ζ153+ζ154ζ155+ζ157 1ζ15ζ154+ζ155 ζ15+ζ154 1ζ15ζ152+ζ153ζ154ζ157 1ζ15ζ154+ζ155 1+ζ15+ζ152ζ153+ζ154ζ155+ζ157
90.7.2e3 C 2 0 2ζ155 2ζ155 2 2ζ155 2ζ155 ζ153+ζ153 ζ156+ζ156 0 0 ζ15+ζ154 1ζ15ζ152+ζ153ζ154ζ157 1+ζ15+ζ152ζ153+ζ154ζ155+ζ157 1ζ15ζ154+ζ155 ζ153+ζ153 ζ156+ζ156 ζ153+ζ153 ζ156+ζ156 1+ζ15+ζ152ζ153+ζ154ζ155+ζ157 1ζ15ζ154+ζ155 ζ15+ζ154 1ζ15ζ152+ζ153ζ154ζ157 1+ζ15+ζ152ζ153+ζ154ζ155+ζ157 1ζ15ζ154+ζ155 1ζ15ζ152+ζ153ζ154ζ157 ζ15+ζ154
90.7.2e4 C 2 0 2ζ155 2ζ155 2 2ζ155 2ζ155 ζ153+ζ153 ζ156+ζ156 0 0 1ζ15ζ152+ζ153ζ154ζ157 ζ15+ζ154 1ζ15ζ154+ζ155 1+ζ15+ζ152ζ153+ζ154ζ155+ζ157 ζ153+ζ153 ζ156+ζ156 ζ153+ζ153 ζ156+ζ156 1ζ15ζ154+ζ155 1+ζ15+ζ152ζ153+ζ154ζ155+ζ157 1ζ15ζ152+ζ153ζ154ζ157 ζ15+ζ154 1ζ15ζ154+ζ155 1+ζ15+ζ152ζ153+ζ154ζ155+ζ157 ζ15+ζ154 1ζ15ζ152+ζ153ζ154ζ157
90.7.2f1 C 2 0 2ζ155 2ζ155 1 ζ155 ζ155 ζ156+ζ156 ζ153+ζ153 0 0 1ζ15ζ154+ζ155 1+ζ15+ζ152ζ153+ζ154ζ155+ζ157 1ζ15ζ152+ζ153ζ154ζ157 ζ15+ζ154 ζ154+ζ154 ζ157+ζ157 ζ151+ζ15 ζ152+ζ152 ζ154+ζ156 1ζ15+ζ152ζ1532ζ156+ζ157 1+ζ15ζ152ζ153+ζ154ζ155 ζ153+ζ157 1+ζ15+ζ152ζ153ζ156+ζ157 1ζ152+ζ153ζ154+2ζ156ζ157 1ζ15ζ152ζ154+ζ1552ζ157 ζ152+ζ153
90.7.2f2 C 2 0 2ζ155 2ζ155 1 ζ155 ζ155 ζ156+ζ156 ζ153+ζ153 0 0 1+ζ15+ζ152ζ153+ζ154ζ155+ζ157 1ζ15ζ154+ζ155 ζ15+ζ154 1ζ15ζ152+ζ153ζ154ζ157 ζ154+ζ154 ζ157+ζ157 ζ151+ζ15 ζ152+ζ152 1ζ15+ζ152ζ1532ζ156+ζ157 ζ154+ζ156 ζ153+ζ157 1+ζ15ζ152ζ153+ζ154ζ155 1ζ152+ζ153ζ154+2ζ156ζ157 1+ζ15+ζ152ζ153ζ156+ζ157 ζ152+ζ153 1ζ15ζ152ζ154+ζ1552ζ157
90.7.2f3 C 2 0 2ζ155 2ζ155 1 ζ155 ζ155 ζ156+ζ156 ζ153+ζ153 0 0 1ζ15ζ154+ζ155 1+ζ15+ζ152ζ153+ζ154ζ155+ζ157 1ζ15ζ152+ζ153ζ154ζ157 ζ15+ζ154 ζ151+ζ15 ζ152+ζ152 ζ154+ζ154 ζ157+ζ157 1+ζ15+ζ152ζ153ζ156+ζ157 1ζ152+ζ153ζ154+2ζ156ζ157 ζ152+ζ153 1ζ15ζ152ζ154+ζ1552ζ157 ζ154+ζ156 1ζ15+ζ152ζ1532ζ156+ζ157 ζ153+ζ157 1+ζ15ζ152ζ153+ζ154ζ155
90.7.2f4 C 2 0 2ζ155 2ζ155 1 ζ155 ζ155 ζ156+ζ156 ζ153+ζ153 0 0 1+ζ15+ζ152ζ153+ζ154ζ155+ζ157 1ζ15ζ154+ζ155 ζ15+ζ154 1ζ15ζ152+ζ153ζ154ζ157 ζ151+ζ15 ζ152+ζ152 ζ154+ζ154 ζ157+ζ157 1ζ152+ζ153ζ154+2ζ156ζ157 1+ζ15+ζ152ζ153ζ156+ζ157 1ζ15ζ152ζ154+ζ1552ζ157 ζ152+ζ153 1ζ15+ζ152ζ1532ζ156+ζ157 ζ154+ζ156 1+ζ15ζ152ζ153+ζ154ζ155 ζ153+ζ157
90.7.2f5 C 2 0 2ζ155 2ζ155 1 ζ155 ζ155 ζ153+ζ153 ζ156+ζ156 0 0 ζ15+ζ154 1ζ15ζ152+ζ153ζ154ζ157 1+ζ15+ζ152ζ153+ζ154ζ155+ζ157 1ζ15ζ154+ζ155 ζ157+ζ157 ζ151+ζ15 ζ152+ζ152 ζ154+ζ154 ζ153+ζ157 1+ζ15ζ152ζ153+ζ154ζ155 1ζ152+ζ153ζ154+2ζ156ζ157 1+ζ15+ζ152ζ153ζ156+ζ157 1ζ15ζ152ζ154+ζ1552ζ157 ζ152+ζ153 ζ154+ζ156 1ζ15+ζ152ζ1532ζ156+ζ157
90.7.2f6 C 2 0 2ζ155 2ζ155 1 ζ155 ζ155 ζ153+ζ153 ζ156+ζ156 0 0 1ζ15ζ152+ζ153ζ154ζ157 ζ15+ζ154 1ζ15ζ154+ζ155 1+ζ15+ζ152ζ153+ζ154ζ155+ζ157 ζ157+ζ157 ζ151+ζ15 ζ152+ζ152 ζ154+ζ154 1+ζ15ζ152ζ153+ζ154ζ155 ζ153+ζ157 1+ζ15+ζ152ζ153ζ156+ζ157 1ζ152+ζ153ζ154+2ζ156ζ157 ζ152+ζ153 1ζ15ζ152ζ154+ζ1552ζ157 1ζ15+ζ152ζ1532ζ156+ζ157 ζ154+ζ156
90.7.2f7 C 2 0 2ζ155 2ζ155 1 ζ155 ζ155 ζ153+ζ153 ζ156+ζ156 0 0 ζ15+ζ154 1ζ15ζ152+ζ153ζ154ζ157 1+ζ15+ζ152ζ153+ζ154ζ155+ζ157 1ζ15ζ154+ζ155 ζ152+ζ152 ζ154+ζ154 ζ157+ζ157 ζ151+ζ15 1ζ15ζ152ζ154+ζ1552ζ157 ζ152+ζ153 1ζ15+ζ152ζ1532ζ156+ζ157 ζ154+ζ156 ζ153+ζ157 1+ζ15ζ152ζ153+ζ154ζ155 1+ζ15+ζ152ζ153ζ156+ζ157 1ζ152+ζ153ζ154+2ζ156ζ157
90.7.2f8 C 2 0 2ζ155 2ζ155 1 ζ155 ζ155 ζ153+ζ153 ζ156+ζ156 0 0 1ζ15ζ152+ζ153ζ154ζ157 ζ15+ζ154 1ζ15ζ154+ζ155 1+ζ15+ζ152ζ153+ζ154ζ155+ζ157 ζ152+ζ152 ζ154+ζ154 ζ157+ζ157 ζ151+ζ15 ζ152+ζ153 1ζ15ζ152ζ154+ζ1552ζ157 ζ154+ζ156 1ζ15+ζ152ζ1532ζ156+ζ157 1+ζ15ζ152ζ153+ζ154ζ155 ζ153+ζ157 1ζ152+ζ153ζ154+2ζ156ζ157 1+ζ15+ζ152ζ153ζ156+ζ157

magma: CharacterTable(G);