Show commands:
Magma
magma: G := TransitiveGroup(30, 16);
Group action invariants
Degree $n$: | $30$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $16$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_3\times D_{15}$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $15$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,15,12,9,5,3,14,11,8,4,2,13,10,7,6)(16,29,25,22,20,17,30,26,23,21,18,28,27,24,19), (1,21,2,19,3,20)(4,16,5,17,6,18)(7,28,8,29,9,30)(10,27,11,25,12,26)(13,24,14,22,15,23) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $S_3$, $C_6$ $10$: $D_{5}$ $18$: $S_3\times C_3$ $30$: $D_{15}$, $D_5\times C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 5: $D_{5}$
Degree 6: $S_3\times C_3$
Degree 10: $D_5$
Degree 15: None
Low degree siblings
45T5Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{30}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{15}$ | $15$ | $2$ | $15$ | $( 1,20)( 2,21)( 3,19)( 4,18)( 5,16)( 6,17)( 7,30)( 8,28)( 9,29)(10,26)(11,27)(12,25)(13,23)(14,24)(15,22)$ |
3A1 | $3^{10}$ | $1$ | $3$ | $20$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,15,14)(16,18,17)(19,21,20)(22,24,23)(25,27,26)(28,30,29)$ |
3A-1 | $3^{10}$ | $1$ | $3$ | $20$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)$ |
3B | $3^{5},1^{15}$ | $2$ | $3$ | $10$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,15,14)$ |
3C1 | $3^{10}$ | $2$ | $3$ | $20$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,18,17)(19,21,20)(22,24,23)(25,27,26)(28,30,29)$ |
3C-1 | $3^{5},1^{15}$ | $2$ | $3$ | $10$ | $(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)$ |
5A1 | $5^{6}$ | $2$ | $5$ | $24$ | $( 1, 9,14, 4,10)( 2, 7,15, 5,11)( 3, 8,13, 6,12)(16,22,30,21,27)(17,23,28,19,25)(18,24,29,20,26)$ |
5A2 | $5^{6}$ | $2$ | $5$ | $24$ | $( 1,14,10, 9, 4)( 2,15,11, 7, 5)( 3,13,12, 8, 6)(16,30,27,22,21)(17,28,25,23,19)(18,29,26,24,20)$ |
6A1 | $6^{5}$ | $15$ | $6$ | $25$ | $( 1,19, 2,20, 3,21)( 4,17, 5,18, 6,16)( 7,29, 8,30, 9,28)(10,25,11,26,12,27)(13,22,14,23,15,24)$ |
6A-1 | $6^{5}$ | $15$ | $6$ | $25$ | $( 1,21, 3,20, 2,19)( 4,16, 6,18, 5,17)( 7,28, 9,30, 8,29)(10,27,12,26,11,25)(13,24,15,23,14,22)$ |
15A1 | $15,5^{3}$ | $2$ | $15$ | $26$ | $( 1,14,10, 9, 4)( 2,15,11, 7, 5)( 3,13,12, 8, 6)(16,28,26,22,19,18,30,25,24,21,17,29,27,23,20)$ |
15A2 | $15,5^{3}$ | $2$ | $15$ | $26$ | $( 1, 9,14, 4,10)( 2, 7,15, 5,11)( 3, 8,13, 6,12)(16,23,29,21,25,18,22,28,20,27,17,24,30,19,26)$ |
15A4 | $15^{2}$ | $2$ | $15$ | $28$ | $( 1, 7,13, 4,11, 3, 9,15, 6,10, 2, 8,14, 5,12)(16,23,29,21,25,18,22,28,20,27,17,24,30,19,26)$ |
15A7 | $15^{2}$ | $2$ | $15$ | $28$ | $( 1,11, 6,14, 7, 3,10, 5,13, 9, 2,12, 4,15, 8)(16,26,19,30,24,17,27,20,28,22,18,25,21,29,23)$ |
15B1 | $15^{2}$ | $2$ | $15$ | $28$ | $( 1, 7,13, 4,11, 3, 9,15, 6,10, 2, 8,14, 5,12)(16,24,28,21,26,17,22,29,19,27,18,23,30,20,25)$ |
15B-1 | $15,5^{3}$ | $2$ | $15$ | $26$ | $( 1,13,11, 9, 6, 2,14,12, 7, 4, 3,15,10, 8, 5)(16,30,27,22,21)(17,28,25,23,19)(18,29,26,24,20)$ |
15B2 | $15^{2}$ | $2$ | $15$ | $28$ | $( 1,15,12, 9, 5, 3,14,11, 8, 4, 2,13,10, 7, 6)(16,29,25,22,20,17,30,26,23,21,18,28,27,24,19)$ |
15B-2 | $15^{2}$ | $2$ | $15$ | $28$ | $( 1, 8,15, 4,12, 2, 9,13, 5,10, 3, 7,14, 6,11)(16,24,28,21,26,17,22,29,19,27,18,23,30,20,25)$ |
15C1 | $15,5^{3}$ | $2$ | $15$ | $26$ | $( 1, 4, 9,10,14)( 2, 5, 7,11,15)( 3, 6, 8,12,13)(16,19,24,27,28,18,21,23,26,30,17,20,22,25,29)$ |
15C-1 | $15^{2}$ | $2$ | $15$ | $28$ | $( 1, 5, 8,10,15, 3, 4, 7,12,14, 2, 6, 9,11,13)(16,20,23,27,29,17,21,24,25,30,18,19,22,26,28)$ |
15C2 | $15^{2}$ | $2$ | $15$ | $28$ | $( 1,15,12, 9, 5, 3,14,11, 8, 4, 2,13,10, 7, 6)(16,28,26,22,19,18,30,25,24,21,17,29,27,23,20)$ |
15C-2 | $15,5^{3}$ | $2$ | $15$ | $26$ | $( 1, 6, 7,10,13, 2, 4, 8,11,14, 3, 5, 9,12,15)(16,21,22,27,30)(17,19,23,25,28)(18,20,24,26,29)$ |
15C4 | $15,5^{3}$ | $2$ | $15$ | $26$ | $( 1,10, 4,14, 9)( 2,11, 5,15, 7)( 3,12, 6,13, 8)(16,25,20,30,23,18,27,19,29,22,17,26,21,28,24)$ |
15C-4 | $15,5^{3}$ | $2$ | $15$ | $26$ | $( 1,12, 5,14, 8, 2,10, 6,15, 9, 3,11, 4,13, 7)(16,27,21,30,22)(17,25,19,28,23)(18,26,20,29,24)$ |
15C7 | $15,5^{3}$ | $2$ | $15$ | $26$ | $( 1, 8,15, 4,12, 2, 9,13, 5,10, 3, 7,14, 6,11)(16,22,30,21,27)(17,23,28,19,25)(18,24,29,20,26)$ |
15C-7 | $15^{2}$ | $2$ | $15$ | $28$ | $( 1,13,11, 9, 6, 2,14,12, 7, 4, 3,15,10, 8, 5)(16,29,25,22,20,17,30,26,23,21,18,28,27,24,19)$ |
Malle's constant $a(G)$: $1/10$
magma: ConjugacyClasses(G);
Group invariants
Order: | $90=2 \cdot 3^{2} \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 90.7 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A1 | 3A-1 | 3B | 3C1 | 3C-1 | 5A1 | 5A2 | 6A1 | 6A-1 | 15A1 | 15A2 | 15A4 | 15A7 | 15B1 | 15B-1 | 15B2 | 15B-2 | 15C1 | 15C-1 | 15C2 | 15C-2 | 15C4 | 15C-4 | 15C7 | 15C-7 | ||
Size | 1 | 15 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 15 | 15 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
2 P | 1A | 1A | 3A-1 | 3A1 | 3C1 | 3B | 3C-1 | 5A2 | 5A1 | 3A-1 | 3A1 | 15C-2 | 15C4 | 15B2 | 15A1 | 15A4 | 15C2 | 15A2 | 15B-2 | 15C7 | 15A7 | 15B-1 | 15C-7 | 15C1 | 15C-1 | 15C-4 | 15B1 | |
3 P | 1A | 2A | 1A | 1A | 1A | 1A | 1A | 5A2 | 5A1 | 2A | 2A | 5A1 | 5A2 | 5A2 | 5A2 | 5A2 | 5A1 | 5A1 | 5A2 | 5A1 | 5A1 | 5A1 | 5A1 | 5A2 | 5A2 | 5A2 | 5A1 | |
5 P | 1A | 2A | 3A-1 | 3A1 | 3C1 | 3B | 3C-1 | 1A | 1A | 6A-1 | 6A1 | 3C-1 | 3C-1 | 3A1 | 3B | 3B | 3C1 | 3B | 3A-1 | 3C-1 | 3B | 3A1 | 3C1 | 3C-1 | 3C1 | 3C1 | 3A-1 | |
Type | ||||||||||||||||||||||||||||
90.7.1a | R | |||||||||||||||||||||||||||
90.7.1b | R | |||||||||||||||||||||||||||
90.7.1c1 | C | |||||||||||||||||||||||||||
90.7.1c2 | C | |||||||||||||||||||||||||||
90.7.1d1 | C | |||||||||||||||||||||||||||
90.7.1d2 | C | |||||||||||||||||||||||||||
90.7.2a | R | |||||||||||||||||||||||||||
90.7.2b1 | R | |||||||||||||||||||||||||||
90.7.2b2 | R | |||||||||||||||||||||||||||
90.7.2c1 | C | |||||||||||||||||||||||||||
90.7.2c2 | C | |||||||||||||||||||||||||||
90.7.2d1 | R | |||||||||||||||||||||||||||
90.7.2d2 | R | |||||||||||||||||||||||||||
90.7.2d3 | R | |||||||||||||||||||||||||||
90.7.2d4 | R | |||||||||||||||||||||||||||
90.7.2e1 | C | |||||||||||||||||||||||||||
90.7.2e2 | C | |||||||||||||||||||||||||||
90.7.2e3 | C | |||||||||||||||||||||||||||
90.7.2e4 | C | |||||||||||||||||||||||||||
90.7.2f1 | C | |||||||||||||||||||||||||||
90.7.2f2 | C | |||||||||||||||||||||||||||
90.7.2f3 | C | |||||||||||||||||||||||||||
90.7.2f4 | C | |||||||||||||||||||||||||||
90.7.2f5 | C | |||||||||||||||||||||||||||
90.7.2f6 | C | |||||||||||||||||||||||||||
90.7.2f7 | C | |||||||||||||||||||||||||||
90.7.2f8 | C |
magma: CharacterTable(G);