Properties

Label 32T12882
Degree 3232
Order 512512
Cyclic no
Abelian no
Solvable yes
Primitive no
pp-group yes
Group: D42:C23D_4^2:C_2^3

Related objects

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(32, 12882);
 

Group action invariants

Degree nn:  3232
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number tt:  1288212882
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  D42:C23D_4^2:C_2^3
Parity:  11
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
#Aut(F/K)\card{\Aut(F/K)}:  88
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,28,17,10)(2,27,18,9)(3,26,19,12)(4,25,20,11)(5,6)(7,8)(13,14)(15,16)(21,22)(23,24)(29,30)(31,32), (1,21,27,29,17,7,9,15)(2,22,28,30,18,8,10,16)(3,23,25,31,19,5,11,13)(4,24,26,32,20,6,12,14), (1,14,9,24,17,32,27,6)(2,13,10,23,18,31,28,5)(3,16,11,22,19,30,25,8)(4,15,12,21,20,29,26,7), (1,32)(2,31)(3,30)(4,29)(5,10,23,28)(6,9,24,27)(7,12,21,26)(8,11,22,25)(13,18)(14,17)(15,20)(16,19), (1,16,27,8,17,30,9,22)(2,15,28,7,18,29,10,21)(3,14,25,6,19,32,11,24)(4,13,26,5,20,31,12,23)
magma: Generators(G);
 

Low degree resolvents

#(G/N)\card{(G/N)}Galois groups for stem field(s)
22C2C_2 x 31
44C22C_2^2 x 155
88D4D_{4} x 24, C23C_2^3 x 155
1616D4×C2D_4\times C_2 x 84, C24C_2^4 x 31
3232C22C2C_2^2 \wr C_2 x 16, C22×D4C_2^2 \times D_4 x 42, 32T39
6464(((C4×C2):C2):C2):C2(((C_4 \times C_2): C_2):C_2):C_2 x 4, 16T105 x 12, 32T273 x 3
128128C2C2C2C_2 \wr C_2\wr C_2 x 4, 16T245 x 6, 32T1369
25625616T509 x 6, 32T4287

Resolvents shown for degrees 47\leq 47

Subfields

Degree 2: C2C_2 x 7

Degree 4: C22C_2^2 x 7, D4D_{4} x 4

Degree 8: C23C_2^3, D4×C2D_4\times C_2 x 6, C2C2C2C_2 \wr C_2\wr C_2 x 4

Degree 16: C22×D4C_2^2 \times D_4, 16T509 x 6

Low degree siblings

32T12882 x 127, 32T12885 x 384

Siblings are shown with degree 47\leq 47

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

magma: ConjugacyClasses(G);
 

Group invariants

Order:  512=29512=2^{9}
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:  44
Label:  512.7530050
magma: IdentifyGroup(G);
 
Character table:    80 x 80 character table

magma: CharacterTable(G);