Show commands:
Magma
magma: G := TransitiveGroup(32, 12882);
Group action invariants
Degree : | magma: t, n := TransitiveGroupIdentification(G); n;
| ||
Transitive number : | magma: t, n := TransitiveGroupIdentification(G); t;
| ||
Group: | |||
Parity: | magma: IsEven(G);
| ||
Primitive: | no | magma: IsPrimitive(G);
| |
magma: NilpotencyClass(G);
| |||
: | magma: Order(Centralizer(SymmetricGroup(n), G));
| ||
Generators: | (1,28,17,10)(2,27,18,9)(3,26,19,12)(4,25,20,11)(5,6)(7,8)(13,14)(15,16)(21,22)(23,24)(29,30)(31,32), (1,21,27,29,17,7,9,15)(2,22,28,30,18,8,10,16)(3,23,25,31,19,5,11,13)(4,24,26,32,20,6,12,14), (1,14,9,24,17,32,27,6)(2,13,10,23,18,31,28,5)(3,16,11,22,19,30,25,8)(4,15,12,21,20,29,26,7), (1,32)(2,31)(3,30)(4,29)(5,10,23,28)(6,9,24,27)(7,12,21,26)(8,11,22,25)(13,18)(14,17)(15,20)(16,19), (1,16,27,8,17,30,9,22)(2,15,28,7,18,29,10,21)(3,14,25,6,19,32,11,24)(4,13,26,5,20,31,12,23) | magma: Generators(G);
|
Low degree resolvents
Galois groups for stem field(s) : x 31 : x 155 : x 24, x 155 : x 84, x 31 : x 16, x 42, 32T39 : x 4, 16T105 x 12, 32T273 x 3 : x 4, 16T245 x 6, 32T1369 : 16T509 x 6, 32T4287 Resolvents shown for degrees
Subfields
Degree 16: , 16T509 x 6
Low degree siblings
32T12882 x 127, 32T12885 x 384Siblings are shown with degree
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
magma: ConjugacyClasses(G);
Group invariants
Order: | magma: Order(G);
| ||
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | |||
Label: | 512.7530050 | magma: IdentifyGroup(G);
| |
Character table: | 80 x 80 character table |
magma: CharacterTable(G);