Show commands:
Magma
magma: G := TransitiveGroup(35, 31);
Group action invariants
Degree $n$: | $35$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $31$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $S_7$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,4,8,3,6,12)(5,10,15,19,25,29,22)(7,14,18,24,28,34,9)(11,16,20,27,23,13,17)(21,26,32,35,30,31,33), (2,5)(3,7)(9,10)(13,14)(16,21)(17,22)(19,26)(27,33)(28,31)(30,32) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: None
Degree 7: None
Low degree siblings
7T7, 14T46, 21T38, 30T565, 42T411, 42T412, 42T413, 42T418Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{35}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{10},1^{15}$ | $21$ | $2$ | $10$ | $( 1, 5)( 3, 6)( 4,28)( 8,26)( 9,35)(12,32)(13,15)(18,27)(21,29)(22,34)$ |
2B | $2^{14},1^{7}$ | $105$ | $2$ | $14$ | $( 1, 5)( 2,11)( 3,13)( 4,35)( 6,15)( 8,26)( 9,28)(12,32)(16,23)(18,34)(19,20)(21,29)(22,27)(25,30)$ |
2C | $2^{16},1^{3}$ | $105$ | $2$ | $16$ | $( 1,32)( 2,25)( 3,28)( 4, 6)( 5,12)( 7,10)( 8,26)( 9,13)(11,30)(14,31)(15,35)(16,23)(18,34)(19,20)(21,29)(22,27)$ |
3A | $3^{10},1^{5}$ | $70$ | $3$ | $20$ | $( 1, 5, 2)( 3, 7, 6)( 4,28,31)( 8,26,19)( 9,10,35)(12,32,30)(13,14,15)(16,29,21)(17,34,22)(18,27,33)$ |
3B | $3^{11},1^{2}$ | $280$ | $3$ | $22$ | $( 1,27,30)( 2,18,32)( 3,16,35)( 4,26,14)( 5,33,12)( 6,21,10)( 7,29, 9)( 8,13,31)(11,25,24)(15,28,19)(17,34,22)$ |
4A | $4^{7},2^{3},1$ | $210$ | $4$ | $24$ | $( 1, 5, 2,11)( 3,13)( 4,10,35,31)( 6,14,15, 7)( 8,26,19,20)( 9,28)(12,32,30,25)(16,23,29,21)(17,34,33,18)(22,27)$ |
4B | $4^{7},2^{3},1$ | $630$ | $4$ | $24$ | $( 1,32, 2,25)( 3,28)( 4, 7,35,14)( 5,30,11,12)( 6,31,15,10)( 8,26,19,20)( 9,13)(16,23,29,21)(17,34,33,18)(22,27)$ |
5A | $5^{7}$ | $504$ | $5$ | $28$ | $( 1, 5, 2,11,24)( 3,13,19,15,26)( 4,10,23,29,31)( 6,14,20, 8, 7)( 9,16,35,21,28)(12,17,34,33,25)(18,32,22,27,30)$ |
6A | $6^{4},3^{2},2^{2},1$ | $210$ | $6$ | $26$ | $( 1, 5, 2)( 3, 7, 6)( 4,22,31,34,28,17)( 8,13,19,15,26,14)( 9,30,35,32,10,12)(11,24)(16,18,21,33,29,27)(23,25)$ |
6B | $6^{3},3^{4},2,1^{3}$ | $420$ | $6$ | $24$ | $( 1, 5, 2)( 3, 7, 6)( 4,28,31)( 8,13,19,15,26,14)( 9,16,35,21,10,29)(11,24)(12,27,30,18,32,33)(17,34,22)$ |
6C | $6^{5},3,2$ | $840$ | $6$ | $28$ | $( 1,17,34,33,25,24)( 2,18,32)( 3,16,35,14, 4,26)( 5,22,27,30,11,12)( 6,21,28,19,15,10)( 7,23,29,31,20, 8)( 9,13)$ |
7A | $7^{5}$ | $720$ | $7$ | $30$ | $( 1,17,20, 8, 7,23,24)( 2,18,14, 4,33, 6,21)( 3,16,11,12,31,34,26)( 5,22,19,15,10,25,29)( 9,30,35,32,28,27,13)$ |
10A | $10^{2},5^{3}$ | $504$ | $10$ | $30$ | $( 1, 5, 2,11,24)( 3,13,19,15,26)( 4,33,23,12,31,34,10,25,29,17)( 6,14,20, 8, 7)( 9,30,35,32,28,27,16,18,21,22)$ |
12A | $12^{2},6,4,1$ | $420$ | $12$ | $30$ | $( 1,32,16,11,12,21, 2,25,29, 5,30,23)( 3,28,27,13, 9,22)( 4,33, 6,31,34, 7,35,17,15,10,18,14)( 8,26,19,20)$ |
Malle's constant $a(G)$: $1/10$
magma: ConjugacyClasses(G);
Group invariants
Order: | $5040=2^{4} \cdot 3^{2} \cdot 5 \cdot 7$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 5040.w | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 5A | 6A | 6B | 6C | 7A | 10A | 12A | ||
Size | 1 | 21 | 105 | 105 | 70 | 280 | 210 | 630 | 504 | 210 | 420 | 840 | 720 | 504 | 420 | |
2 P | 1A | 1A | 1A | 1A | 3A | 3B | 2B | 2B | 5A | 3A | 3A | 3B | 7A | 5A | 6A | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 4A | 4B | 5A | 2B | 2A | 2C | 7A | 10A | 4A | |
5 P | 1A | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 1A | 6A | 6B | 6C | 7A | 2A | 12A | |
7 P | 1A | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 5A | 6A | 6B | 6C | 1A | 10A | 12A | |
Type |
magma: CharacterTable(G);