Properties

Label 35T37
Degree $35$
Order $24010$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_7^4:C_{10}$

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(35, 37);
 

Group action invariants

Degree $n$:  $35$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $37$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $C_7^4:C_{10}$
Parity:  $-1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $1$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,18,31,11,26)(2,17,29,10,24)(3,19,32,12,25)(4,21,33,14,22)(5,16,35,9,27)(6,20,34,13,23)(7,15,30,8,28), (1,28,9,34,16,3,25,10,29,17)(2,23,11,32,18)(4,27,8,33,15,7,26,13,35,20)(5,22,14,30,21,6,24,12,31,19)
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$5$:  $C_5$
$10$:  $C_{10}$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 5: $C_5$

Degree 7: None

Low degree siblings

35T37 x 79

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $24010=2 \cdot 5 \cdot 7^{4}$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  24010.d
magma: IdentifyGroup(G);
 
Character table:    not computed

magma: CharacterTable(G);