Properties

Label 35T41
Degree $35$
Order $25200$
Cyclic no
Abelian no
Solvable no
Primitive no
$p$-group no
Group: $C_5\times S_7$

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(35, 41);
 

Group action invariants

Degree $n$:  $35$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $41$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $C_5\times S_7$
Parity:  $-1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $5$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,21,6,26,16)(2,22,7,27,17)(3,23,8,28,18)(4,24,9,29,19)(5,25,10,30,20)(11,31)(12,32)(13,33)(14,34)(15,35), (1,14,22,20,8,31,29,2,15,23,16,9,32,30,3,11,24,17,10,33,26,4,12,25,18,6,34,27,5,13,21,19,7,35,28)
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$5$:  $C_5$
$10$:  $C_{10}$
$5040$:  $S_7$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 5: $C_5$

Degree 7: $S_7$

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $25200=2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  no
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  25200.l
magma: IdentifyGroup(G);
 
Character table:    75 x 75 character table

magma: CharacterTable(G);