Show commands:
Magma
magma: G := TransitiveGroup(36, 3430);
Group action invariants
Degree : | magma: t, n := TransitiveGroupIdentification(G); n;
| ||
Transitive number : | magma: t, n := TransitiveGroupIdentification(G); t;
| ||
Group: | |||
Parity: | magma: IsEven(G);
| ||
Primitive: | no | magma: IsPrimitive(G);
| |
magma: NilpotencyClass(G);
| |||
: | magma: Order(Centralizer(SymmetricGroup(n), G));
| ||
Generators: | (1,22,28)(2,21,27)(3,24,25)(4,23,26)(5,16,32,7,13,29)(6,15,31,8,14,30)(9,20,36,10,19,35)(11,18,34,12,17,33), (1,17,30,2,18,29)(3,19,31,4,20,32)(5,24,34)(6,23,33)(7,22,36)(8,21,35)(9,16,27,12,14,25)(10,15,28,11,13,26) | magma: Generators(G);
|
Low degree resolvents
Galois groups for stem field(s) : x 3 : x 4 : : x 12 : : x 3, x 4 : x 3 : x 9 : x 3, 36T4 : x 3 : 18T25 x 9 : 12T85 x 3, 36T103 x 3 : 18T109 x 9 : 12T164, 36T718 x 3 : 18T263 x 3 Resolvents shown for degrees
Subfields
Degree 2: None
Degree 4: None
Degree 6: None
Degree 12: None
Degree 18: 18T263 x 3
Low degree siblings
36T3047 x 9, 36T3140 x 54, 36T3141 x 54, 36T3358 x 54, 36T3359 x 18, 36T3360 x 54, 36T3361 x 108, 36T3429 x 6, 36T3430 x 17Siblings are shown with degree
A number field with this Galois group has 2 arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
magma: ConjugacyClasses(G);
Group invariants
Order: | magma: Order(G);
| ||
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 2304.ii | magma: IdentifyGroup(G);
| |
Character table: | 96 x 96 character table |
magma: CharacterTable(G);