Properties

Label 37T4
Degree $37$
Order $148$
Cyclic no
Abelian no
Solvable yes
Primitive yes
$p$-group no
Group: $C_{37}:C_{4}$

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(37, 4);
 

Group invariants

Abstract group:  $C_{37}:C_{4}$
magma: IdentifyGroup(G);
 
Order:  $148=2^{2} \cdot 37$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
magma: NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $37$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $4$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $-1$
magma: IsEven(G);
 
Primitive:  yes
magma: IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $1$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)$, $(1,31,36,6)(2,25,35,12)(3,19,34,18)(4,13,33,24)(5,7,32,30)(8,26,29,11)(9,20,28,17)(10,14,27,23)(15,21,22,16)$
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$4$:  $C_4$

Resolvents shown for degrees $\leq 47$

Subfields

Prime degree - none

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{37}$ $1$ $1$ $0$ $()$
2A $2^{18},1$ $37$ $2$ $18$ $( 1,36)( 2,35)( 3,34)( 4,33)( 5,32)( 6,31)( 7,30)( 8,29)( 9,28)(10,27)(11,26)(12,25)(13,24)(14,23)(15,22)(16,21)(17,20)(18,19)$
4A1 $4^{9},1$ $37$ $4$ $27$ $( 1,31,36, 6)( 2,25,35,12)( 3,19,34,18)( 4,13,33,24)( 5, 7,32,30)( 8,26,29,11)( 9,20,28,17)(10,14,27,23)(15,21,22,16)$
4A-1 $4^{9},1$ $37$ $4$ $27$ $( 1, 6,36,31)( 2,12,35,25)( 3,18,34,19)( 4,24,33,13)( 5,30,32, 7)( 8,11,29,26)( 9,17,28,20)(10,23,27,14)(15,16,22,21)$
37A1 $37$ $4$ $37$ $36$ $( 1,37,36,35,34,33,32,31,30,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)$
37A2 $37$ $4$ $37$ $36$ $( 1,36,34,32,30,28,26,24,22,20,18,16,14,12,10, 8, 6, 4, 2,37,35,33,31,29,27,25,23,21,19,17,15,13,11, 9, 7, 5, 3)$
37A3 $37$ $4$ $37$ $36$ $( 1,35,32,29,26,23,20,17,14,11, 8, 5, 2,36,33,30,27,24,21,18,15,12, 9, 6, 3,37,34,31,28,25,22,19,16,13,10, 7, 4)$
37A4 $37$ $4$ $37$ $36$ $( 1,34,30,26,22,18,14,10, 6, 2,35,31,27,23,19,15,11, 7, 3,36,32,28,24,20,16,12, 8, 4,37,33,29,25,21,17,13, 9, 5)$
37A5 $37$ $4$ $37$ $36$ $( 1,33,28,23,18,13, 8, 3,35,30,25,20,15,10, 5,37,32,27,22,17,12, 7, 2,34,29,24,19,14, 9, 4,36,31,26,21,16,11, 6)$
37A8 $37$ $4$ $37$ $36$ $( 1,30,22,14, 6,35,27,19,11, 3,32,24,16, 8,37,29,21,13, 5,34,26,18,10, 2,31,23,15, 7,36,28,20,12, 4,33,25,17, 9)$
37A9 $37$ $4$ $37$ $36$ $( 1,29,20,11, 2,30,21,12, 3,31,22,13, 4,32,23,14, 5,33,24,15, 6,34,25,16, 7,35,26,17, 8,36,27,18, 9,37,28,19,10)$
37A10 $37$ $4$ $37$ $36$ $( 1,28,18, 8,35,25,15, 5,32,22,12, 2,29,19, 9,36,26,16, 6,33,23,13, 3,30,20,10,37,27,17, 7,34,24,14, 4,31,21,11)$
37A15 $37$ $4$ $37$ $36$ $( 1,23, 8,30,15,37,22, 7,29,14,36,21, 6,28,13,35,20, 5,27,12,34,19, 4,26,11,33,18, 3,25,10,32,17, 2,24, 9,31,16)$

Malle's constant $a(G)$:     $1/18$

magma: ConjugacyClasses(G);
 

Character table

1A 2A 4A1 4A-1 37A1 37A2 37A3 37A4 37A5 37A8 37A9 37A10 37A15
Size 1 37 37 37 4 4 4 4 4 4 4 4 4
2 P 1A 1A 2A 2A 37A2 37A4 37A1 37A8 37A10 37A15 37A3 37A9 37A5
37 P 1A 2A 4A-1 4A1 37A3 37A1 37A9 37A2 37A15 37A4 37A10 37A5 37A8
Type
148.3.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1
148.3.1b R 1 1 1 1 1 1 1 1 1 1 1 1 1
148.3.1c1 C 1 1 i i 1 1 1 1 1 1 1 1 1
148.3.1c2 C 1 1 i i 1 1 1 1 1 1 1 1 1
148.3.4a1 R 4 0 0 0 ζ3716+ζ3715+ζ3715+ζ3716 ζ3711+ζ378+ζ378+ζ3711 ζ3712+ζ372+ζ372+ζ3712 ζ3714+ζ3710+ζ3710+ζ3714 ζ3717+ζ379+ζ379+ζ3717 ζ377+ζ375+ζ375+ζ377 ζ3718+ζ373+ζ373+ζ3718 ζ3713+ζ374+ζ374+ζ3713 ζ376+ζ371+ζ37+ζ376
148.3.4a2 R 4 0 0 0 ζ3717+ζ379+ζ379+ζ3717 ζ3714+ζ3710+ζ3710+ζ3714 ζ3716+ζ3715+ζ3715+ζ3716 ζ376+ζ371+ζ37+ζ376 ζ3712+ζ372+ζ372+ζ3712 ζ3718+ζ373+ζ373+ζ3718 ζ3713+ζ374+ζ374+ζ3713 ζ377+ζ375+ζ375+ζ377 ζ3711+ζ378+ζ378+ζ3711
148.3.4a3 R 4 0 0 0 ζ3714+ζ3710+ζ3710+ζ3714 ζ377+ζ375+ζ375+ζ377 ζ3711+ζ378+ζ378+ζ3711 ζ3718+ζ373+ζ373+ζ3718 ζ376+ζ371+ζ37+ζ376 ζ3717+ζ379+ζ379+ζ3717 ζ3712+ζ372+ζ372+ζ3712 ζ3716+ζ3715+ζ3715+ζ3716 ζ3713+ζ374+ζ374+ζ3713
148.3.4a4 R 4 0 0 0 ζ3718+ζ373+ζ373+ζ3718 ζ3717+ζ379+ζ379+ζ3717 ζ377+ζ375+ζ375+ζ377 ζ3712+ζ372+ζ372+ζ3712 ζ3713+ζ374+ζ374+ζ3713 ζ376+ζ371+ζ37+ζ376 ζ3711+ζ378+ζ378+ζ3711 ζ3714+ζ3710+ζ3710+ζ3714 ζ3716+ζ3715+ζ3715+ζ3716
148.3.4a5 R 4 0 0 0 ζ3711+ζ378+ζ378+ζ3711 ζ3713+ζ374+ζ374+ζ3713 ζ376+ζ371+ζ37+ζ376 ζ377+ζ375+ζ375+ζ377 ζ3714+ζ3710+ζ3710+ζ3714 ζ3716+ζ3715+ζ3715+ζ3716 ζ3717+ζ379+ζ379+ζ3717 ζ3712+ζ372+ζ372+ζ3712 ζ3718+ζ373+ζ373+ζ3718
148.3.4a6 R 4 0 0 0 ζ3713+ζ374+ζ374+ζ3713 ζ3712+ζ372+ζ372+ζ3712 ζ3718+ζ373+ζ373+ζ3718 ζ3716+ζ3715+ζ3715+ζ3716 ζ377+ζ375+ζ375+ζ377 ζ3711+ζ378+ζ378+ζ3711 ζ3714+ζ3710+ζ3710+ζ3714 ζ376+ζ371+ζ37+ζ376 ζ3717+ζ379+ζ379+ζ3717
148.3.4a7 R 4 0 0 0 ζ3712+ζ372+ζ372+ζ3712 ζ376+ζ371+ζ37+ζ376 ζ3717+ζ379+ζ379+ζ3717 ζ3711+ζ378+ζ378+ζ3711 ζ3716+ζ3715+ζ3715+ζ3716 ζ3713+ζ374+ζ374+ζ3713 ζ377+ζ375+ζ375+ζ377 ζ3718+ζ373+ζ373+ζ3718 ζ3714+ζ3710+ζ3710+ζ3714
148.3.4a8 R 4 0 0 0 ζ377+ζ375+ζ375+ζ377 ζ3716+ζ3715+ζ3715+ζ3716 ζ3713+ζ374+ζ374+ζ3713 ζ3717+ζ379+ζ379+ζ3717 ζ3718+ζ373+ζ373+ζ3718 ζ3714+ζ3710+ζ3710+ζ3714 ζ376+ζ371+ζ37+ζ376 ζ3711+ζ378+ζ378+ζ3711 ζ3712+ζ372+ζ372+ζ3712
148.3.4a9 R 4 0 0 0 ζ376+ζ371+ζ37+ζ376 ζ3718+ζ373+ζ373+ζ3718 ζ3714+ζ3710+ζ3710+ζ3714 ζ3713+ζ374+ζ374+ζ3713 ζ3711+ζ378+ζ378+ζ3711 ζ3712+ζ372+ζ372+ζ3712 ζ3716+ζ3715+ζ3715+ζ3716 ζ3717+ζ379+ζ379+ζ3717 ζ377+ζ375+ζ375+ζ377

magma: CharacterTable(G);
 

Regular extensions

Data not computed