Show commands:
Magma
magma: G := TransitiveGroup(37, 4);
Group invariants
Abstract group: | $C_{37}:C_{4}$ | magma: IdentifyGroup(G);
| |
Order: | $148=2^{2} \cdot 37$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $37$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $4$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)$, $(1,31,36,6)(2,25,35,12)(3,19,34,18)(4,13,33,24)(5,7,32,30)(8,26,29,11)(9,20,28,17)(10,14,27,23)(15,21,22,16)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{37}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{18},1$ | $37$ | $2$ | $18$ | $( 1,36)( 2,35)( 3,34)( 4,33)( 5,32)( 6,31)( 7,30)( 8,29)( 9,28)(10,27)(11,26)(12,25)(13,24)(14,23)(15,22)(16,21)(17,20)(18,19)$ |
4A1 | $4^{9},1$ | $37$ | $4$ | $27$ | $( 1,31,36, 6)( 2,25,35,12)( 3,19,34,18)( 4,13,33,24)( 5, 7,32,30)( 8,26,29,11)( 9,20,28,17)(10,14,27,23)(15,21,22,16)$ |
4A-1 | $4^{9},1$ | $37$ | $4$ | $27$ | $( 1, 6,36,31)( 2,12,35,25)( 3,18,34,19)( 4,24,33,13)( 5,30,32, 7)( 8,11,29,26)( 9,17,28,20)(10,23,27,14)(15,16,22,21)$ |
37A1 | $37$ | $4$ | $37$ | $36$ | $( 1,37,36,35,34,33,32,31,30,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)$ |
37A2 | $37$ | $4$ | $37$ | $36$ | $( 1,36,34,32,30,28,26,24,22,20,18,16,14,12,10, 8, 6, 4, 2,37,35,33,31,29,27,25,23,21,19,17,15,13,11, 9, 7, 5, 3)$ |
37A3 | $37$ | $4$ | $37$ | $36$ | $( 1,35,32,29,26,23,20,17,14,11, 8, 5, 2,36,33,30,27,24,21,18,15,12, 9, 6, 3,37,34,31,28,25,22,19,16,13,10, 7, 4)$ |
37A4 | $37$ | $4$ | $37$ | $36$ | $( 1,34,30,26,22,18,14,10, 6, 2,35,31,27,23,19,15,11, 7, 3,36,32,28,24,20,16,12, 8, 4,37,33,29,25,21,17,13, 9, 5)$ |
37A5 | $37$ | $4$ | $37$ | $36$ | $( 1,33,28,23,18,13, 8, 3,35,30,25,20,15,10, 5,37,32,27,22,17,12, 7, 2,34,29,24,19,14, 9, 4,36,31,26,21,16,11, 6)$ |
37A8 | $37$ | $4$ | $37$ | $36$ | $( 1,30,22,14, 6,35,27,19,11, 3,32,24,16, 8,37,29,21,13, 5,34,26,18,10, 2,31,23,15, 7,36,28,20,12, 4,33,25,17, 9)$ |
37A9 | $37$ | $4$ | $37$ | $36$ | $( 1,29,20,11, 2,30,21,12, 3,31,22,13, 4,32,23,14, 5,33,24,15, 6,34,25,16, 7,35,26,17, 8,36,27,18, 9,37,28,19,10)$ |
37A10 | $37$ | $4$ | $37$ | $36$ | $( 1,28,18, 8,35,25,15, 5,32,22,12, 2,29,19, 9,36,26,16, 6,33,23,13, 3,30,20,10,37,27,17, 7,34,24,14, 4,31,21,11)$ |
37A15 | $37$ | $4$ | $37$ | $36$ | $( 1,23, 8,30,15,37,22, 7,29,14,36,21, 6,28,13,35,20, 5,27,12,34,19, 4,26,11,33,18, 3,25,10,32,17, 2,24, 9,31,16)$ |
Malle's constant $a(G)$: $1/18$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 4A1 | 4A-1 | 37A1 | 37A2 | 37A3 | 37A4 | 37A5 | 37A8 | 37A9 | 37A10 | 37A15 | ||
Size | 1 | 37 | 37 | 37 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
2 P | 1A | 1A | 2A | 2A | 37A2 | 37A4 | 37A1 | 37A8 | 37A10 | 37A15 | 37A3 | 37A9 | 37A5 | |
37 P | 1A | 2A | 4A-1 | 4A1 | 37A3 | 37A1 | 37A9 | 37A2 | 37A15 | 37A4 | 37A10 | 37A5 | 37A8 | |
Type | ||||||||||||||
148.3.1a | R | |||||||||||||
148.3.1b | R | |||||||||||||
148.3.1c1 | C | |||||||||||||
148.3.1c2 | C | |||||||||||||
148.3.4a1 | R | |||||||||||||
148.3.4a2 | R | |||||||||||||
148.3.4a3 | R | |||||||||||||
148.3.4a4 | R | |||||||||||||
148.3.4a5 | R | |||||||||||||
148.3.4a6 | R | |||||||||||||
148.3.4a7 | R | |||||||||||||
148.3.4a8 | R | |||||||||||||
148.3.4a9 | R |
magma: CharacterTable(G);
Regular extensions
Data not computed