Show commands:
Magma
magma: G := TransitiveGroup(37, 5);
Group invariants
Abstract group: | $C_{37}:C_{6}$ | magma: IdentifyGroup(G);
| |
Order: | $222=2 \cdot 3 \cdot 37$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $37$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $5$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)$, $(1,27,26,36,10,11)(2,17,15,35,20,22)(3,7,4,34,30,33)(5,24,19,32,13,18)(6,14,8,31,23,29)(9,21,12,28,16,25)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $C_6$ Resolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{37}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{18},1$ | $37$ | $2$ | $18$ | $( 2,37)( 3,36)( 4,35)( 5,34)( 6,33)( 7,32)( 8,31)( 9,30)(10,29)(11,28)(12,27)(13,26)(14,25)(15,24)(16,23)(17,22)(18,21)(19,20)$ |
3A1 | $3^{12},1$ | $37$ | $3$ | $24$ | $( 2,11,27)( 3,21,16)( 4,31, 5)( 6,14,20)( 7,24, 9)( 8,34,35)(10,17,13)(12,37,28)(15,30,32)(18,23,36)(19,33,25)(22,26,29)$ |
3A-1 | $3^{12},1$ | $37$ | $3$ | $24$ | $( 2,27,11)( 3,16,21)( 4, 5,31)( 6,20,14)( 7, 9,24)( 8,35,34)(10,13,17)(12,28,37)(15,32,30)(18,36,23)(19,25,33)(22,29,26)$ |
6A1 | $6^{6},1$ | $37$ | $6$ | $30$ | $( 2,12,11,37,27,28)( 3,23,21,36,16,18)( 4,34,31,35, 5, 8)( 6,19,14,33,20,25)( 7,30,24,32, 9,15)(10,26,17,29,13,22)$ |
6A-1 | $6^{6},1$ | $37$ | $6$ | $30$ | $( 2,28,27,37,11,12)( 3,18,16,36,21,23)( 4, 8, 5,35,31,34)( 6,25,20,33,14,19)( 7,15, 9,32,24,30)(10,22,13,29,17,26)$ |
37A1 | $37$ | $6$ | $37$ | $36$ | $( 1,37,36,35,34,33,32,31,30,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)$ |
37A2 | $37$ | $6$ | $37$ | $36$ | $( 1,36,34,32,30,28,26,24,22,20,18,16,14,12,10, 8, 6, 4, 2,37,35,33,31,29,27,25,23,21,19,17,15,13,11, 9, 7, 5, 3)$ |
37A3 | $37$ | $6$ | $37$ | $36$ | $( 1,35,32,29,26,23,20,17,14,11, 8, 5, 2,36,33,30,27,24,21,18,15,12, 9, 6, 3,37,34,31,28,25,22,19,16,13,10, 7, 4)$ |
37A5 | $37$ | $6$ | $37$ | $36$ | $( 1,33,28,23,18,13, 8, 3,35,30,25,20,15,10, 5,37,32,27,22,17,12, 7, 2,34,29,24,19,14, 9, 4,36,31,26,21,16,11, 6)$ |
37A6 | $37$ | $6$ | $37$ | $36$ | $( 1,32,26,20,14, 8, 2,33,27,21,15, 9, 3,34,28,22,16,10, 4,35,29,23,17,11, 5,36,30,24,18,12, 6,37,31,25,19,13, 7)$ |
37A9 | $37$ | $6$ | $37$ | $36$ | $( 1,29,20,11, 2,30,21,12, 3,31,22,13, 4,32,23,14, 5,33,24,15, 6,34,25,16, 7,35,26,17, 8,36,27,18, 9,37,28,19,10)$ |
Malle's constant $a(G)$: $1/18$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 3A1 | 3A-1 | 6A1 | 6A-1 | 37A1 | 37A2 | 37A3 | 37A5 | 37A6 | 37A9 | ||
Size | 1 | 37 | 37 | 37 | 37 | 37 | 6 | 6 | 6 | 6 | 6 | 6 | |
2 P | 1A | 1A | 3A-1 | 3A1 | 3A1 | 3A-1 | 37A2 | 37A3 | 37A6 | 37A1 | 37A9 | 37A5 | |
3 P | 1A | 2A | 1A | 1A | 2A | 2A | 37A3 | 37A6 | 37A9 | 37A2 | 37A5 | 37A1 | |
37 P | 1A | 2A | 3A1 | 3A-1 | 6A1 | 6A-1 | 1A | 1A | 1A | 1A | 1A | 1A | |
Type | |||||||||||||
222.1.1a | R | ||||||||||||
222.1.1b | R | ||||||||||||
222.1.1c1 | C | ||||||||||||
222.1.1c2 | C | ||||||||||||
222.1.1d1 | C | ||||||||||||
222.1.1d2 | C | ||||||||||||
222.1.6a1 | R | ||||||||||||
222.1.6a2 | R | ||||||||||||
222.1.6a3 | R | ||||||||||||
222.1.6a4 | R | ||||||||||||
222.1.6a5 | R | ||||||||||||
222.1.6a6 | R |
magma: CharacterTable(G);
Regular extensions
Data not computed