Show commands:
Magma
magma: G := TransitiveGroup(6, 2);
Group action invariants
Degree $n$: | $6$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $2$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $S_3$ | ||
CHM label: | $D_{6}(6) = [3]2$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $6$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,3,5)(2,4,6), (1,4)(2,3)(5,6) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Low degree siblings
3T2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{6}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{3}$ | $3$ | $2$ | $3$ | $(1,6)(2,5)(3,4)$ |
3A | $3^{2}$ | $2$ | $3$ | $4$ | $(1,3,5)(2,4,6)$ |
Malle's constant $a(G)$: $1/3$
magma: ConjugacyClasses(G);
Group invariants
Order: | $6=2 \cdot 3$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 6.1 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A | ||
Size | 1 | 3 | 2 | |
2 P | 1A | 1A | 3A | |
3 P | 1A | 2A | 1A | |
Type | ||||
6.1.1a | R | |||
6.1.1b | R | |||
6.1.2a | R |
magma: CharacterTable(G);
Indecomposable integral representations
Complete
list of indecomposable integral representations:
|
Triv $\oplus$ $(A',L)$ | $\cong$ | $L$ $\oplus$ $(A',\textrm{Triv})$ |
Sign $\oplus$ $(A,L)$ | $\cong$ | $L$ $\oplus$ $(A,\textrm{Sign})$ |
Triv $\oplus$ $(A+A',L)$ | $\cong$ | $(A,L)$ $\oplus$ $(A',L)$ |