Show commands:
Magma
magma: G := TransitiveGroup(8, 30);
Group action invariants
Degree $n$: | $8$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $30$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $(((C_4 \times C_2): C_2):C_2):C_2$ | ||
CHM label: | $1/2[2^{4}]cD(4)$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,2,3,8)(4,5,6,7), (2,6)(3,7), (1,3)(4,8)(5,7) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$ x 2, $C_4\times C_2$ $16$: $C_2^2:C_4$ $32$: $C_2^3 : C_4 $ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Low degree siblings
8T30 x 3, 16T143 x 2, 16T167 x 2, 16T168 x 2, 16T169 x 2, 32T157 x 2, 32T177, 32T178Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{8}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{4}$ | $1$ | $2$ | $4$ | $(1,5)(2,6)(3,7)(4,8)$ |
2B | $2^{2},1^{4}$ | $2$ | $2$ | $2$ | $(2,6)(4,8)$ |
2C | $2^{2},1^{4}$ | $4$ | $2$ | $2$ | $(3,7)(4,8)$ |
2D | $2^{4}$ | $4$ | $2$ | $4$ | $(1,3)(2,8)(4,6)(5,7)$ |
2E | $2^{3},1^{2}$ | $8$ | $2$ | $3$ | $(1,3)(4,8)(5,7)$ |
4A | $4,1^{4}$ | $4$ | $4$ | $3$ | $(2,8,6,4)$ |
4B | $4^{2}$ | $4$ | $4$ | $6$ | $(1,7,5,3)(2,4,6,8)$ |
4C | $4,2^{2}$ | $4$ | $4$ | $5$ | $(1,5)(2,4,6,8)(3,7)$ |
4D1 | $4,2^{2}$ | $8$ | $4$ | $5$ | $(1,8)(2,3,6,7)(4,5)$ |
4D-1 | $4,2^{2}$ | $8$ | $4$ | $5$ | $(1,2)(3,4,7,8)(5,6)$ |
4E1 | $4^{2}$ | $8$ | $4$ | $6$ | $(1,2,3,8)(4,5,6,7)$ |
4E-1 | $4^{2}$ | $8$ | $4$ | $6$ | $(1,8,3,2)(4,7,6,5)$ |
Malle's constant $a(G)$: $1/2$
magma: ConjugacyClasses(G);
Group invariants
Order: | $64=2^{6}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | $4$ | ||
Label: | 64.34 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D1 | 4D-1 | 4E1 | 4E-1 | ||
Size | 1 | 1 | 2 | 4 | 4 | 8 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 2B | 2A | 2B | 2C | 2C | 2D | 2D | |
Type | ||||||||||||||
64.34.1a | R | |||||||||||||
64.34.1b | R | |||||||||||||
64.34.1c | R | |||||||||||||
64.34.1d | R | |||||||||||||
64.34.1e1 | C | |||||||||||||
64.34.1e2 | C | |||||||||||||
64.34.1f1 | C | |||||||||||||
64.34.1f2 | C | |||||||||||||
64.34.2a | R | |||||||||||||
64.34.2b | R | |||||||||||||
64.34.4a | R | |||||||||||||
64.34.4b | R | |||||||||||||
64.34.4c | R |
magma: CharacterTable(G);