Properties

Label 8T30
8T30 1 2 1->2 3 1->3 2->3 6 2->6 7 3->7 8 3->8 4 5 4->5 4->8 5->6 5->7 6->7 7->4 8->1
Degree 88
Order 6464
Cyclic no
Abelian no
Solvable yes
Primitive no
pp-group yes
Group: (((C4×C2):C2):C2):C2(((C_4 \times C_2): C_2):C_2):C_2

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(8, 30);
 

Group invariants

Abstract group:  (((C4×C2):C2):C2):C2(((C_4 \times C_2): C_2):C_2):C_2
Copy content magma:IdentifyGroup(G);
 
Order:  64=2664=2^{6}
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:  44
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree nn:  88
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number tt:  3030
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
CHM label:   1/2[24]cD(4)1/2[2^{4}]cD(4)
Parity:  1-1
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
#Aut(F/K)\card{\Aut(F/K)}:  22
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,2,3,8)(4,5,6,7)(1,2,3,8)(4,5,6,7), (2,6)(3,7)(2,6)(3,7), (1,3)(4,8)(5,7)(1,3)(4,8)(5,7)
Copy content magma:Generators(G);
 

Low degree resolvents

#(G/N)\card{(G/N)}Galois groups for stem field(s)
22C2C_2 x 3
44C4C_4 x 2, C22C_2^2
88D4D_{4} x 2, C4×C2C_4\times C_2
1616C22:C4C_2^2:C_4
3232C23:C4C_2^3 : C_4

Resolvents shown for degrees 47\leq 47

Subfields

Degree 2: C2C_2

Degree 4: D4D_{4}

Low degree siblings

8T30 x 3, 16T143 x 2, 16T167 x 2, 16T168 x 2, 16T169 x 2, 32T157 x 2, 32T177, 32T178

Siblings are shown with degree 47\leq 47

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A 181^{8} 11 11 00 ()()
2A 242^{4} 11 22 44 (1,5)(2,6)(3,7)(4,8)(1,5)(2,6)(3,7)(4,8)
2B 22,142^{2},1^{4} 22 22 22 (2,6)(4,8)(2,6)(4,8)
2C 242^{4} 44 22 44 (1,3)(2,8)(4,6)(5,7)(1,3)(2,8)(4,6)(5,7)
2D 22,142^{2},1^{4} 44 22 22 (2,6)(3,7)(2,6)(3,7)
2E 23,122^{3},1^{2} 88 22 33 (1,3)(2,6)(5,7)(1,3)(2,6)(5,7)
4A 4,144,1^{4} 44 44 33 (2,8,6,4)(2,8,6,4)
4B 424^{2} 44 44 66 (1,7,5,3)(2,4,6,8)(1,7,5,3)(2,4,6,8)
4C 4,224,2^{2} 44 44 55 (1,5)(2,4,6,8)(3,7)(1,5)(2,4,6,8)(3,7)
4D1 424^{2} 88 44 66 (1,2,3,8)(4,5,6,7)(1,2,3,8)(4,5,6,7)
4D-1 424^{2} 88 44 66 (1,8,3,2)(4,7,6,5)(1,8,3,2)(4,7,6,5)
4E1 4,224,2^{2} 88 44 55 (1,8)(2,3,6,7)(4,5)(1,8)(2,3,6,7)(4,5)
4E-1 4,224,2^{2} 88 44 55 (1,6,5,2)(3,8)(4,7)(1,6,5,2)(3,8)(4,7)

Malle's constant a(G)a(G):     1/21/2

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 2B 2C 2D 2E 4A 4B 4C 4D1 4D-1 4E1 4E-1
Size 1 1 2 4 4 8 4 4 4 8 8 8 8
2 P 1A 1A 1A 1A 1A 1A 2B 2A 2B 2C 2C 2D 2D
Type
64.34.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1
64.34.1b R 1 1 1 1 1 1 1 1 1 1 1 1 1
64.34.1c R 1 1 1 1 1 1 1 1 1 1 1 1 1
64.34.1d R 1 1 1 1 1 1 1 1 1 1 1 1 1
64.34.1e1 C 1 1 1 1 1 1 1 1 1 i i i i
64.34.1e2 C 1 1 1 1 1 1 1 1 1 i i i i
64.34.1f1 C 1 1 1 1 1 1 1 1 1 i i i i
64.34.1f2 C 1 1 1 1 1 1 1 1 1 i i i i
64.34.2a R 2 2 2 2 2 0 0 2 0 0 0 0 0
64.34.2b R 2 2 2 2 2 0 0 2 0 0 0 0 0
64.34.4a R 4 4 4 0 0 0 0 0 0 0 0 0 0
64.34.4b R 4 4 0 0 0 0 2 0 2 0 0 0 0
64.34.4c R 4 4 0 0 0 0 2 0 2 0 0 0 0

Copy content magma:CharacterTable(G);
 

Regular extensions

f1=f_{ 1 } = x8+(t24)x6+(4t2+8)x4+(6t28)x2+(3t2+4)x^{8} + \left(t^{2} - 4\right) x^{6} + \left(-4 t^{2} + 8\right) x^{4} + \left(6 t^{2} - 8\right) x^{2} + \left(-3 t^{2} + 4\right) Copy content Toggle raw display