Show commands:
Magma
magma: G := TransitiveGroup(8, 42);
Group action invariants
Degree $n$: | $8$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $42$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $A_4\wr C_2$ | ||
CHM label: | $[A(4)^{2}]2$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,3)(2,8), (1,2,3), (1,5)(2,6)(3,7)(4,8) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $S_3$, $C_6$ $18$: $S_3\times C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Low degree siblings
12T126, 12T128, 12T129, 16T708, 18T112, 18T113, 24T692, 24T694, 24T695, 24T702, 24T703, 24T704, 32T9306, 36T316, 36T318, 36T456, 36T457, 36T458, 36T459Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{8}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{2},1^{4}$ | $6$ | $2$ | $2$ | $(4,6)(5,7)$ |
2B | $2^{4}$ | $9$ | $2$ | $4$ | $(1,3)(2,8)(4,6)(5,7)$ |
2C | $2^{4}$ | $12$ | $2$ | $4$ | $(1,5)(2,6)(3,7)(4,8)$ |
3A1 | $3,1^{5}$ | $8$ | $3$ | $2$ | $(1,3,2)$ |
3A-1 | $3,1^{5}$ | $8$ | $3$ | $2$ | $(1,2,3)$ |
3B1 | $3^{2},1^{2}$ | $16$ | $3$ | $4$ | $(1,2,3)(4,6,5)$ |
3B-1 | $3^{2},1^{2}$ | $16$ | $3$ | $4$ | $(1,3,2)(4,5,6)$ |
3C | $3^{2},1^{2}$ | $32$ | $3$ | $4$ | $(1,2,3)(4,5,6)$ |
4A | $4^{2}$ | $36$ | $4$ | $6$ | $(1,5,3,7)(2,6,8,4)$ |
6A1 | $3,2^{2},1$ | $24$ | $6$ | $4$ | $(1,2,3)(4,6)(5,7)$ |
6A-1 | $3,2^{2},1$ | $24$ | $6$ | $4$ | $(1,3,2)(4,6)(5,7)$ |
6B1 | $6,2$ | $48$ | $6$ | $6$ | $(1,7,3,6,8,4)(2,5)$ |
6B-1 | $6,2$ | $48$ | $6$ | $6$ | $(1,4,8,6,3,7)(2,5)$ |
Malle's constant $a(G)$: $1/2$
magma: ConjugacyClasses(G);
Group invariants
Order: | $288=2^{5} \cdot 3^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 288.1025 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 3A1 | 3A-1 | 3B1 | 3B-1 | 3C | 4A | 6A1 | 6A-1 | 6B1 | 6B-1 | ||
Size | 1 | 6 | 9 | 12 | 8 | 8 | 16 | 16 | 32 | 36 | 24 | 24 | 48 | 48 | |
2 P | 1A | 1A | 1A | 1A | 3A-1 | 3A1 | 3B-1 | 3B1 | 3C | 2B | 3A1 | 3A-1 | 3B1 | 3B-1 | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 1A | 1A | 4A | 2A | 2A | 2C | 2C | |
Type | |||||||||||||||
288.1025.1a | R | ||||||||||||||
288.1025.1b | R | ||||||||||||||
288.1025.1c1 | C | ||||||||||||||
288.1025.1c2 | C | ||||||||||||||
288.1025.1d1 | C | ||||||||||||||
288.1025.1d2 | C | ||||||||||||||
288.1025.2a | R | ||||||||||||||
288.1025.2b1 | C | ||||||||||||||
288.1025.2b2 | C | ||||||||||||||
288.1025.6a | R | ||||||||||||||
288.1025.6b1 | C | ||||||||||||||
288.1025.6b2 | C | ||||||||||||||
288.1025.9a | R | ||||||||||||||
288.1025.9b | R |
magma: CharacterTable(G);