Show commands:
Magma
magma: G := TransitiveGroup(9, 32);
Group action invariants
Degree $n$: | $9$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $32$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $\mathrm{P}\Gamma\mathrm{L}(2,8)$ | ||
CHM label: | $L(9):3=P|L(2,8)$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (2,5)(3,6)(4,7)(8,9), (1,9)(2,3)(4,5)(6,7), (1,2,4,3,6,7,5), (2,4,6)(3,5,7) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $3$: $C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Low degree siblings
27T391, 28T165, 36T2342Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{9}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{4},1$ | $63$ | $2$ | $4$ | $(1,4)(2,7)(3,6)(5,9)$ |
3A | $3^{3}$ | $56$ | $3$ | $6$ | $(1,2,3)(4,6,7)(5,9,8)$ |
3B1 | $3^{2},1^{3}$ | $84$ | $3$ | $4$ | $(1,2,7)(4,8,9)$ |
3B-1 | $3^{2},1^{3}$ | $84$ | $3$ | $4$ | $(1,7,2)(4,9,8)$ |
6A1 | $6,2,1$ | $252$ | $6$ | $6$ | $(1,5,3,4,9,6)(2,7)$ |
6A-1 | $6,2,1$ | $252$ | $6$ | $6$ | $(1,6,9,4,3,5)(2,7)$ |
7A | $7,1^{2}$ | $216$ | $7$ | $6$ | $(1,2,6,9,8,3,5)$ |
9A | $9$ | $168$ | $9$ | $8$ | $(1,7,5,3,6,8,2,4,9)$ |
9B1 | $9$ | $168$ | $9$ | $8$ | $(1,3,8,4,6,5,9,7,2)$ |
9B-1 | $9$ | $168$ | $9$ | $8$ | $(1,8,7,2,5,4,3,9,6)$ |
Malle's constant $a(G)$: $1/4$
magma: ConjugacyClasses(G);
Group invariants
Order: | $1512=2^{3} \cdot 3^{3} \cdot 7$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 1512.779 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 3A | 3B1 | 3B-1 | 6A1 | 6A-1 | 7A | 9A | 9B1 | 9B-1 | ||
Size | 1 | 63 | 56 | 84 | 84 | 252 | 252 | 216 | 168 | 168 | 168 | |
2 P | 1A | 1A | 3A | 3B-1 | 3B1 | 3B1 | 3B-1 | 7A | 9B1 | 9A | 9B-1 | |
3 P | 1A | 2A | 1A | 1A | 1A | 2A | 2A | 7A | 3A | 3A | 3A | |
7 P | 1A | 2A | 3A | 3B1 | 3B-1 | 6A1 | 6A-1 | 1A | 9B-1 | 9A | 9B1 | |
Type | ||||||||||||
1512.779.1a | R | |||||||||||
1512.779.1b1 | C | |||||||||||
1512.779.1b2 | C | |||||||||||
1512.779.7a | R | |||||||||||
1512.779.7b1 | C | |||||||||||
1512.779.7b2 | C | |||||||||||
1512.779.8a | R | |||||||||||
1512.779.8b1 | C | |||||||||||
1512.779.8b2 | C | |||||||||||
1512.779.21a | R | |||||||||||
1512.779.27a | R |
magma: CharacterTable(G);