Genus 2 curves in isogeny class 1008.a
Label | Equation |
---|---|
1008.a.27216.1 | \(y^2 + (x^3 + x)y = -4x^4 + 15x^2 - 21\) |
L-function data
Analytic rank: | \(0\) | ||||||||||||||||||
Mordell-Weil rank: | \(0\) | ||||||||||||||||||
Bad L-factors: |
| ||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||
See L-function page for more information |
Sato-Tate group
\(\mathrm{ST} =\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$, \(\quad \mathrm{ST}^0 = \mathrm{SU}(2)\times\mathrm{SU}(2)\)
Decomposition of the Jacobian
Splits over \(\Q\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
Elliptic curve isogeny class 21.a
Elliptic curve isogeny class 48.a
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism algebra over \(\Q\):
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).
More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.