Properties

Label 102400.e
Conductor 102400102400
Sato-Tate group J(E1)J(E_1)
End(JQ)R\End(J_{\overline{\Q}}) \otimes \R M2(R)\mathrm{M}_2(\R)
End(JQ)Q\End(J_{\overline{\Q}}) \otimes \Q M2(Q)\mathrm{M}_2(\Q)
End(J)Q\End(J) \otimes \Q Q×Q\Q \times \Q
Q\overline{\Q}-simple no
GL2\mathrm{GL}_2-type yes

Related objects

Learn more

Genus 2 curves in isogeny class 102400.e

Label Equation
102400.e.102400.1 y2=x5+3x3+xy^2 = x^5 + 3x^3 + x

L-function data

Analytic rank:00
Mordell-Weil rank:00
 
Bad L-factors:
Prime L-Factor
221 1
55(1T)2 ( 1 - T )^{2}
 
Good L-factors:
Prime L-Factor
33(12T+3T2)(1+2T+3T2) ( 1 - 2 T + 3 T^{2} )( 1 + 2 T + 3 T^{2} )
77(12T+7T2)(1+2T+7T2) ( 1 - 2 T + 7 T^{2} )( 1 + 2 T + 7 T^{2} )
1111(14T+11T2)(1+4T+11T2) ( 1 - 4 T + 11 T^{2} )( 1 + 4 T + 11 T^{2} )
1313(16T+13T2)2 ( 1 - 6 T + 13 T^{2} )^{2}
1717(12T+17T2)2 ( 1 - 2 T + 17 T^{2} )^{2}
1919(18T+19T2)(1+8T+19T2) ( 1 - 8 T + 19 T^{2} )( 1 + 8 T + 19 T^{2} )
2323(16T+23T2)(1+6T+23T2) ( 1 - 6 T + 23 T^{2} )( 1 + 6 T + 23 T^{2} )
2929(12T+29T2)2 ( 1 - 2 T + 29 T^{2} )^{2}
\cdots\cdots
 
See L-function page for more information

Sato-Tate group

ST=\mathrm{ST} = J(E1)J(E_1), ST0=SU(2)\quad \mathrm{ST}^0 = \mathrm{SU}(2)

Decomposition of the Jacobian

Splits over Q\Q

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 320.e
  Elliptic curve isogeny class 320.b

Endomorphisms of the Jacobian

Of GL2\GL_2-type over Q\Q

Endomorphism algebra over Q\Q:

End(J)Q\End (J_{}) \otimes \Q \simeqQ\Q ×\times Q\Q
End(J)R\End (J_{}) \otimes \R\simeq R×R\R \times \R

Smallest field over which all endomorphisms are defined:
Galois number field K=Q(a)K = \Q (a) \simeq Q(1)\Q(\sqrt{-1}) with defining polynomial x2+1x^{2} + 1

Endomorphism algebra over Q\overline{\Q}:

End(JQ)Q\End (J_{\overline{\Q}}) \otimes \Q \simeqM2(\mathrm{M}_2(Q\Q))
End(JQ)R\End (J_{\overline{\Q}}) \otimes \R\simeq M2(R)\mathrm{M}_2 (\R)

More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.