Genus 2 curves in isogeny class 102400.e
Analytic rank :0 0 0
Mordell-Weil rank :0 0 0
Bad L-factors :
Prime
L-Factor
2 2 2 1 1 1
5 5 5 ( 1 − T ) 2 ( 1 - T )^{2} ( 1 − T ) 2
Good L-factors :
Prime
L-Factor
3 3 3 ( 1 − 2 T + 3 T 2 ) ( 1 + 2 T + 3 T 2 ) ( 1 - 2 T + 3 T^{2} )( 1 + 2 T + 3 T^{2} ) ( 1 − 2 T + 3 T 2 ) ( 1 + 2 T + 3 T 2 )
7 7 7 ( 1 − 2 T + 7 T 2 ) ( 1 + 2 T + 7 T 2 ) ( 1 - 2 T + 7 T^{2} )( 1 + 2 T + 7 T^{2} ) ( 1 − 2 T + 7 T 2 ) ( 1 + 2 T + 7 T 2 )
11 11 1 1 ( 1 − 4 T + 11 T 2 ) ( 1 + 4 T + 11 T 2 ) ( 1 - 4 T + 11 T^{2} )( 1 + 4 T + 11 T^{2} ) ( 1 − 4 T + 1 1 T 2 ) ( 1 + 4 T + 1 1 T 2 )
13 13 1 3 ( 1 − 6 T + 13 T 2 ) 2 ( 1 - 6 T + 13 T^{2} )^{2} ( 1 − 6 T + 1 3 T 2 ) 2
17 17 1 7 ( 1 − 2 T + 17 T 2 ) 2 ( 1 - 2 T + 17 T^{2} )^{2} ( 1 − 2 T + 1 7 T 2 ) 2
19 19 1 9 ( 1 − 8 T + 19 T 2 ) ( 1 + 8 T + 19 T 2 ) ( 1 - 8 T + 19 T^{2} )( 1 + 8 T + 19 T^{2} ) ( 1 − 8 T + 1 9 T 2 ) ( 1 + 8 T + 1 9 T 2 )
23 23 2 3 ( 1 − 6 T + 23 T 2 ) ( 1 + 6 T + 23 T 2 ) ( 1 - 6 T + 23 T^{2} )( 1 + 6 T + 23 T^{2} ) ( 1 − 6 T + 2 3 T 2 ) ( 1 + 6 T + 2 3 T 2 )
29 29 2 9 ( 1 − 2 T + 29 T 2 ) 2 ( 1 - 2 T + 29 T^{2} )^{2} ( 1 − 2 T + 2 9 T 2 ) 2
⋯ \cdots ⋯ ⋯ \cdots ⋯
See L-function page for more information
S T = \mathrm{ST} = S T = J ( E 1 ) J(E_1) J ( E 1 ) , S T 0 = S U ( 2 ) \quad \mathrm{ST}^0 = \mathrm{SU}(2) S T 0 = S U ( 2 )
Splits over Q \Q Q
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes: Elliptic curve isogeny class 320.e Elliptic curve isogeny class 320.b
Of GL 2 \GL_2 GL 2 -type over Q \Q Q
Endomorphism algebra over Q \Q Q :
End ( J ) ⊗ Q \End (J_{}) \otimes \Q E n d ( J ) ⊗ Q ≃ \simeq ≃ Q \Q Q × \times × Q \Q Q End ( J ) ⊗ R \End (J_{}) \otimes \R E n d ( J ) ⊗ R ≃ \simeq ≃ R × R \R \times \R R × R
Smallest field over which all endomorphisms are defined:
Galois number field K = Q ( a ) ≃ K = \Q (a) \simeq K = Q ( a ) ≃ Q ( − 1 ) \Q(\sqrt{-1}) Q ( − 1 ) with defining polynomial x 2 + 1 x^{2} + 1 x 2 + 1
Endomorphism algebra over Q ‾ \overline{\Q} Q :
End ( J Q ‾ ) ⊗ Q \End (J_{\overline{\Q}}) \otimes \Q E n d ( J Q ) ⊗ Q ≃ \simeq ≃ M 2 ( \mathrm{M}_2( M 2 ( Q \Q Q ) ) ) End ( J Q ‾ ) ⊗ R \End (J_{\overline{\Q}}) \otimes \R E n d ( J Q ) ⊗ R ≃ \simeq ≃ M 2 ( R ) \mathrm{M}_2 (\R) M 2 ( R )
More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.