Properties

Label 2304.b
Conductor 23042304
Sato-Tate group E1E_1
End(JQ)R\End(J_{\overline{\Q}}) \otimes \R M2(R)\mathrm{M}_2(\R)
End(JQ)Q\End(J_{\overline{\Q}}) \otimes \Q M2(Q)\mathrm{M}_2(\Q)
End(J)Q\End(J) \otimes \Q M2(Q)\mathrm{M}_2(\Q)
Q\overline{\Q}-simple no
GL2\mathrm{GL}_2-type no

Related objects

Learn more

Genus 2 curves in isogeny class 2304.b

Label Equation
2304.b.147456.1 y2=x62x42x21y^2 = -x^6 - 2x^4 - 2x^2 - 1

L-function data

Analytic rank:00
Mordell-Weil rank:00
 
Bad L-factors:
Prime L-Factor
221 1
33(1T)2 ( 1 - T )^{2}
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
55 (1+2T+5T2)2 ( 1 + 2 T + 5 T^{2} )^{2} 2.5.e_o
77 (1+7T2)2 ( 1 + 7 T^{2} )^{2} 2.7.a_o
1111 (1+4T+11T2)2 ( 1 + 4 T + 11 T^{2} )^{2} 2.11.i_bm
1313 (1+2T+13T2)2 ( 1 + 2 T + 13 T^{2} )^{2} 2.13.e_be
1717 (12T+17T2)2 ( 1 - 2 T + 17 T^{2} )^{2} 2.17.ae_bm
1919 (14T+19T2)2 ( 1 - 4 T + 19 T^{2} )^{2} 2.19.ai_cc
2323 (18T+23T2)2 ( 1 - 8 T + 23 T^{2} )^{2} 2.23.aq_eg
2929 (16T+29T2)2 ( 1 - 6 T + 29 T^{2} )^{2} 2.29.am_dq
\cdots\cdots\cdots
 
See L-function page for more information

Sato-Tate group

ST=\mathrm{ST} = E1E_1, ST0=SU(2)\quad \mathrm{ST}^0 = \mathrm{SU}(2)

Decomposition of the Jacobian

Splits over Q\Q

Decomposes up to isogeny as the square of the elliptic curve isogeny class:
  Elliptic curve isogeny class 48.a

Endomorphisms of the Jacobian

Not of GL2\GL_2-type over Q\Q

Endomorphism algebra over Q\Q:

End(J)Q\End (J_{}) \otimes \Q \simeqM2(\mathrm{M}_2(Q\Q))
End(J)R\End (J_{}) \otimes \R\simeq M2(R)\mathrm{M}_2 (\R)

All Q\overline{\Q}-endomorphisms of the Jacobian are defined over Q\Q.

More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.